Masayuki Oginuma, Moana Nishida, Tomomi Ohmura-Adachi, Kota Abe, Shohei Ogamino, Chihiro Mogi, Hideaki Matsui, Tohru Ishitani (2022) Rapid reverse genetics systems for Nothobranchius furzeri, a suitable model organism to study vertebrate aging., Scientific reports, Volume 12, Number 1, pp. 11628
Published in 2022 Jul 8 (Electronic publication in July 8, 2022, midnight )
(Abstract) The African turquoise killifish Nothobranchius furzeri (N. furzeri) is a useful model organism for studying aging, age-related diseases, and embryonic diapause. CRISPR/Cas9-mediated gene knockout and Tol2 transposon-mediated transgenesis in N. furzeri have been reported previously. However, these methods take time to generate knockout and transgenic fish. In addition, knock-in technology that inserts large DNA fragments as fluorescent reporter constructs into the target gene in N. furzeri has not yet been established. Here, we show that triple-target CRISPR-mediated single gene disruption efficiently produces whole-body biallelic knockout and enables the examination of gene function in the F0 generation. In addition, we developed a method for creating the knock-in reporter N. furzeri without crossing by optimizing the CRISPR/Cas9 system. These methods drastically reduce the duration of experiments, and we think that these advances will accelerate aging and developmental studies using N. furzeri.(MeSH Terms)