Detail of Fig4b_NIR_ICG-Herceptin

(Too many images for preview; see images in SSBD:OMERO Dataset)


Project
Title
NIR images of a breast tumor-bearing nude mouse after the injection of ICG–Herceptin via a tail vein for 0, 1, 3 days.
Description
NIR images of a breast tumor-bearing nude mouse after the injection of ICG–Herceptin via a tail vein for 0 day.
Release, Updated
2022-11-23
License
CC BY
Kind
Image data
File Formats
.tif
Data size
16.1 MB

Organism
Mus musculus ( NCBI:txid10090 )
Strain(s)
-
Cell Line
-
Organism
Homo sapiens ( NCBI:txid9606 )
Strain(s)
-
Cell Line
-
Reporter
ICG–Herceptin

Datatype
-
Molecular Function (MF)
Biological Process (BP)
tumor suppressor ( GO:0051726 )
Cellular Component (CC)
Biological Imaging Method
fluorescence microscopy ( Fbbi:00000246 )
X scale
264.58 micrometer/pixel
Y scale
264.58 micrometer/pixel
Z scale
-
T scale
-

Image Acquisition
Experiment type
-
Microscope type
-
Acquisition mode
-
Contrast method
-
Microscope model
-
Detector model
-
Objective model
-
Filter set
-

Summary of Methods
See details in Tsuboi S, et. al. (2020) RSC Adv., 10(47):28171-28179.
Related paper(s)

Setsuko Tsuboi, Takashi Jin (2020) Shortwave-infrared (SWIR) fluorescence molecular imaging using indocyanine green-antibody conjugates for the optical diagnostics of cancerous tumours., RSC advances, Volume 10, Number 47, pp. 28171-28179

Published in 2020 Jul 27 (Electronic publication in July 28, 2020, midnight )

(Abstract) Recently, shortwave-infrared (SWIR, 1000-1400 nm) fluorescence imaging has attracted much attention due to the higher contrast and sensitivity with deeper penetration depths compared to conventional visible and near-infrared (NIR) fluorescence imaging. For the SWIR fluorescence imaging, the development of fluorescent probes emitting over 1000 nm is necessary. So far, a variety of SWIR fluorescent probes based on single-walled carbon nanotubes, quantum dots, rare-metal doped nanomaterials, and organic dyes have been developed. However, there are a very limited number of biocompatible SWIR fluorescent probes, which can be used to biomedical applications. Among NIR and SWIR fluorescent probes, indocyanine green (ICG) is the only fluorescent dye approved by US Food and Drug Administration (FDA) for clinical use. Although ICG has a fluorescence maximum at a NIR region (ca. 830 nm), ICG emits in the SWIR region over 1000 nm. Here, we present ICG-based SWIR fluorescence molecular imaging for the highly-sensitive optical detection of breast and skin tumours in mice. As SWIR fluorescent molecular-imaging probes, we synthesized ICG-antibody conjugates, which prepared from anti-HER2 antibody (Herceptin), anti-EGFR antibody (Erbitux), anti-VEGFR-2 antibody (Cyramza), and anti-PD-L1 antibody (anti-PD-L1 ab). The present SWIR molecular imaging probes specifically accumulated to the breast and skin tumours, and their SWIR fluorescence images (>1000 nm) showed 1.5-2.0 times higher contrast than NIR tumour images taken at 830 nm. We show that the SWIR fluorescence imaging using ICG-antibody conjugates can be used for the elucidation of expression level of cancer-specific membrane proteins, HER2, EGFR, VEGFR-2, and PD-L1 in vivo. We also show that the SWIR fluorescence imaging enables quantitative analysis of the change in the size of tumour treated with an anti-cancer drug, Kadcyla. Our findings suggest that the SWIR fluorescence molecular imaging using ICG-antibody conjugates has potential to use for the optical diagnostics of cancerous tumors in medical and clinical fields.

Contact
Takashi Jin , RIKEN , Center for Biosystems Dynamics Research , Laboratory for Developmental Dynamics
Contributors
Setsuko Tsuboi , Takashi Jin

OMERO Dataset
OMERO Project
Source