Detail of Fig3d_WT_1911270315pre

(Too many images for preview; see images in SSBD:OMERO Dataset)


Project
Title
Time-lapse images of fluorescence recovery of GFP-actin in dendritic spines of WT neurons. (pre-bleach)
Description
Time-lapse images of fluorescence recovery of GFP-actin in dendritic spines of WT neurons. (pre-bleach)
Release, Updated
2022-03-31
License
CC-BY
Kind
Image data
File Formats
.oib
Data size
3.2 MB

Organism
Mus musculus ( NCBITaxon:10090 )
Strain(s)
-
Cell Line
-
Protein names
actin
Protein tags
GFP

Datatype
-
Molecular Function (MF)
-
Biological Process (BP)
-
Cellular Component (CC)
dendritic spine ( GO:0043197 )
Biological Imaging Method
time lapse microscopy ( Fbbi:00000249 )
X scale
0.082 micrometer/pixel
Y scale
0.082 micrometer/pixel
Z scale
0.5 micrometer/slice
T scale
10.09 sec per time interval

Image Acquisition
Experiment type
-
Microscope type
-
Acquisition mode
-
Contrast method
-
Microscope model
-
Detector model
-
Objective model
-
Filter set
-

Summary of Methods
See details in Tanaka S, et. al. (2020) Microscopy (Oxf)., 69(1):44-52.
Related paper(s)

Shinji Tanaka, Yasutaka Masuda, Akihiro Harada, Shigeo Okabe (2020) Impaired actin dynamics and suppression of Shank2-mediated spine enlargement in cortactin knockout mice., Microscopy (Oxford, England), Volume 69, Number 1, pp. 44-52

Published in 2020 Mar 9

(Abstract) Cortactin regulates actin polymerization and stabilizes branched actin network. In neurons, cortactin is enriched in dendritic spines that contain abundant actin polymers. To explore the function of cortactin in dendritic spines, we examined spine morphology and dynamics in cultured neurons taken from cortactin knockout (KO) mice. Histological analysis revealed that the density and morphology of dendritic spines were not significantly different between wild-type (WT) and cortactin KO neurons. Time-lapse imaging of hippocampal slice cultures showed that the extent of spine volume change was similar between WT and cortactin KO neurons. Despite little effect of cortactin deletion on spine morphology and dynamics, actin turnover in dendritic spines was accelerated in cortactin KO neurons. Furthermore, we detected a suppressive effect of cortactin KO on spine head size under the condition of excessive spine enlargement induced by overexpression of a prominent postsynaptic density protein Shank2. These results suggest that cortactin may have a role in maintaining actin organization by stabilizing actin filaments near the postsynaptic density.
(MeSH Terms)

Contact
Shigeo Okabe , University of Tokyo , Department of Cellular Neurobiology, Graduate School of Medicine
Contributors

OMERO Dataset
OMERO Project
Source