Bright field and NIR fluorescence images of breast tumor mouse injected with ICG-Ab contatining S4-6 micelles or without S4-6 micelles for several time course
Description
-
Relase date
2018-11-14
Updated date
-
License
CC BY
Kind
Image data
based on Experiment
Number of Datasets
8
( Image datasets: 8,
Quantitative data datasets: 0 )
(Abstract) Indocyanine green (ICG) is the only near-infrared (NIR) fluorescent dye which is approved for medical applications. However, ICG has several drawbacks such as aqueous instability, photodegradation, and low fluorescence quantum yield (2.5% in water), which lead to the limitation on the use of ICG for in vitro and in vivo NIR fluorescence imaging. Free ICG rapidly aggregates in physiological buffer solutions, and its fluorescence diminishes within several days. The objective of this work is to provide an easy method for the enhancement of the stability and fluorescence brightness of ICG in aqueous solutions for NIR fluorescence imaging. Herein, we report that the incorporation of ICG into small calix[4]arene (S4-6) micelles (<5 nm in diameter) significantly improves the aqueous stability and fluorescence brightness of ICG. The fluorescence quantum yields of ICG-calix[4]arene micelles are increased up to ∼6% in aqueous solutions. Using the ICG-calix[4]arene micelles, we achieved non-invasive NIR fluorescence imaging of the liver and lymph system in mice. Furthermore, we achieved NIR fluorescence imaging of nude mice bearing human breast tumors using an ICG conjugated antibody which is incorporated into the calix[4]arene micelles. Preparation of the calix[4]arene micelles including ICG is very easy and the micelle system does not show significant cytotoxicity. The ICG-calix[4]arene micelle system acts as a highly stable and bright probe for in vitro and in vivo NIR fluorescence imaging.
Contact
Takashi Jin
, RIKEN
, Quantitative Biology Center
, Laboratory for Nano-Bio Probes