Summary of 33-Yamao-MolDynRho

SSBD:database
SSBD:database URL
Title
-
Description
-
Relase date
2017-10-03
Updated date
2018-11-15
License
CC BY
Kind
Image data based on Experiment
Number of Datasets
19 ( Image datasets: 19, Quantitative data datasets: 0 )
Size of Datasets
805.3 MB ( Image datasets: 805.3 MB, Quantitative data datasets: 0 bytes )

Organism(s)
H. sapiens
Strain(s)
HT-1080
Gene symbol(s)
Cdc42, Rac1
Protein name(s)
NA

Datatype
cell dynamics
Molecular Function (MF)
Biological Process (BP)
cellular protein localization
Cellular Component (CC)
-
Biological Imaging Method
-
XYZ Scale
XY: 0.4933 micrometer/pixel, Z: NA
T scale
10 minute for each time interval

Image Acquisition
Experiment type
FRET
Microscope type
ConfocalMicroscope
Acquisition mode
LaserScanningConfocalMicroscopy
Contrast method
Fluorescence
Microscope model
Olympus IX81
Detector model
Roper Scientific Cool SNAP-K4
Objective model
Olympus UPLANSAPO 60x O
Filter set
Excitation, Olympus 435/20, Dichroic: Omega XF2034; Emission, Omega 480AF30 for CFP and Omega 535AF26 for FRET

Related paper(s)

Masataka Yamao, Honda Naoki, Katsuyuki Kunida, Kazuhiro Aoki, Michiyuki Matsuda, Shin Ishii (2015) Distinct predictive performance of Rac1 and Cdc42 in cell migration., Scientific reports, Volume 5, pp. 17527

Published in 2015 Dec 4 (Electronic publication in Dec. 4, 2015, midnight )

(Abstract) We propose a new computation-based approach for elucidating how signaling molecules are decoded in cell migration. In this approach, we performed FRET time-lapse imaging of Rac1 and Cdc42, members of Rho GTPases which are responsible for cell motility, and quantitatively identified the response functions that describe the conversion from the molecular activities to the morphological changes. Based on the identified response functions, we clarified the profiles of how the morphology spatiotemporally changes in response to local and transient activation of Rac1 and Cdc42, and found that Rac1 and Cdc42 activation triggers laterally propagating membrane protrusion. The response functions were also endowed with property of differentiator, which is beneficial for maintaining sensitivity under adaptation to the mean level of input. Using the response function, we could predict the morphological change from molecular activity, and its predictive performance provides a new quantitative measure of how much the Rho GTPases participate in the cell migration. Interestingly, we discovered distinct predictive performance of Rac1 and Cdc42 depending on the migration modes, indicating that Rac1 and Cdc42 contribute to persistent and random migration, respectively. Thus, our proposed predictive approach enabled us to uncover the hidden information processing rules of Rho GTPases in the cell migration.
(MeSH Terms)

Contact
Naoki Honda , Kyoto University , Graduate School of Informatics
Contributors
Masataka Yamao, Honda Naoki, Katsuyuki Kunida, Kazuhiro Aoki, Michiyuki Matsuda, Shin Ishii


Dataset List of 33-Yamao-MolDynRho

#
Dataset ID
Kind
Size
4D View
SSBD:OMERO
Download BDML
Download Images
# 976
Datast ID Fig1a_Cdc42
Dataset Kind Image data
Dataset Size 324.8 MB
4D view
SSBD:OMERO
Download BDML
Download Image data

# 977
Datast ID Fig1a_Cdc42
Dataset Kind Image data
Dataset Size 324.8 MB
4D view
SSBD:OMERO
Download BDML
Download Image data

# 978
Datast ID Fig1a_Cdc42
Dataset Kind Image data
Dataset Size 324.8 MB
4D view
SSBD:OMERO
Download BDML
Download Image data

# 979
Datast ID Fig1a_Cdc42
Dataset Kind Image data
Dataset Size 324.8 MB
4D view
SSBD:OMERO
Download BDML
Download Image data

# 980
Datast ID Fig1a_Cdc42
Dataset Kind Image data
Dataset Size 324.8 MB
4D view
SSBD:OMERO
Download BDML
Download Image data

# 981
Datast ID Fig1a_Cdc42
Dataset Kind Image data
Dataset Size 324.8 MB
4D view
SSBD:OMERO
Download BDML
Download Image data

# 982
Datast ID Fig1a_Cdc42
Dataset Kind Image data
Dataset Size 324.8 MB
4D view
SSBD:OMERO
Download BDML
Download Image data

# 983
Datast ID Fig1a_Cdc42
Dataset Kind Image data
Dataset Size 324.8 MB
4D view
SSBD:OMERO
Download BDML
Download Image data

# 984
Datast ID Fig1a_Cdc42
Dataset Kind Image data
Dataset Size 324.8 MB
4D view
SSBD:OMERO
Download BDML
Download Image data

# 985
Datast ID Fig1a_Cdc42
Dataset Kind Image data
Dataset Size 324.8 MB
4D view
SSBD:OMERO
Download BDML
Download Image data

# 986
Datast ID Fig1a_Cdc42
Dataset Kind Image data
Dataset Size 324.8 MB
4D view
SSBD:OMERO
Download BDML
Download Image data

# 987
Datast ID Fig1a_Rac1
Dataset Kind Image data
Dataset Size 480.5 MB
4D view
SSBD:OMERO
Download BDML
Download Image data

# 988
Datast ID Fig1a_Rac1
Dataset Kind Image data
Dataset Size 480.5 MB
4D view
SSBD:OMERO
Download BDML
Download Image data

# 989
Datast ID Fig1a_Rac1
Dataset Kind Image data
Dataset Size 480.5 MB
4D view
SSBD:OMERO
Download BDML
Download Image data

# 990
Datast ID Fig1a_Rac1
Dataset Kind Image data
Dataset Size 480.5 MB
4D view
SSBD:OMERO
Download BDML
Download Image data

# 991
Datast ID Fig1a_Rac1
Dataset Kind Image data
Dataset Size 480.5 MB
4D view
SSBD:OMERO
Download BDML
Download Image data

# 992
Datast ID Fig1a_Rac1
Dataset Kind Image data
Dataset Size 480.5 MB
4D view
SSBD:OMERO
Download BDML
Download Image data

# 993
Datast ID Fig1a_Rac1
Dataset Kind Image data
Dataset Size 480.5 MB
4D view
SSBD:OMERO
Download BDML
Download Image data

# 994
Datast ID Fig1a_Rac1
Dataset Kind Image data
Dataset Size 480.5 MB
4D view
SSBD:OMERO
Download BDML
Download Image data