Summary of ssbd-repos-000387

Name
URL
DOI

Title
Super resolution cellular images using fluorescent-tags of StayGold variants
Description

Although StayGold is a bright and highly photostable fluorescent protein, its propensity for obligate dimer formation may hinder applications in molecular fusion and membrane targeting. To attain monovalent as well as bright and photostable labeling, we engineered tandem dimers of StayGold to promote dispersibility. On the basis of the crystal structure
of this fluorescent protein, we disrupted the dimerization to generate a monomeric variant that offers improved photostability and brightness compared to StayGold. We applied the new monovalent StayGold tools to live-cell imaging experiments using spinning-disk laser-scanning confocal microscopy or structured illumination microscopy. We achieved cell-wide, high-spatiotemporal resolution and sustained imaging of dynamic subcellular events, including the targeting of endogenous condensin I
to mitotic chromosomes, the movement of the Golgi apparatus and its membranous derivatives along microtubule networks, the distribution of cortical filamentous actin and the remolding of cristae membranes within mobile mitochondria.

Submited Date
2024-11-29
Release Date
2024-12-24
Updated Date
-
License
Funding information
-
File formats
avi,bmp,czi,eps,ets,jpg,mpg,oir,opju,pdf,png,roi,tif,txt,vsi,xlsm,xlsx
Data size
295.1 GB

Organism
Homo sapiens (NCBI:txid9606)
Strain
-
Cell Line
-
Genes
-
Proteins
-

GO Molecular Function (MF)
-
GO Biological Process (BP)
-
GO Cellular Component (CC)
-
Study Type
-
Imaging Methods
-

Method Summary

See details in See details in Ando, et. al. (2024) Nat Methods.

Related paper(s)

Ryoko Ando, Satoshi Shimozono, Hideo Ago, Masatoshi Takagi, Mayu Sugiyama, Hiroshi Kurokawa, Masahiko Hirano, Yusuke Niino, Go Ueno, Fumiyoshi Ishidate, Takahiro Fujiwara, Yasushi Okada, Masaki Yamamoto, Atsushi Miyawaki (2023) StayGold variants for molecular fusion and membrane-targeting applications., Nature methods

Published in 2023 Nov 30 (Electronic publication in Nov. 30, 2023, midnight )

(Abstract) Although StayGold is a bright and highly photostable fluorescent protein, its propensity for obligate dimer formation may hinder applications in molecular fusion and membrane targeting. To attain monovalent as well as bright and photostable labeling, we engineered tandem dimers of StayGold to promote dispersibility. On the basis of the crystal structure of this fluorescent protein, we disrupted the dimerization to generate a monomeric variant that offers improved photostability and brightness compared to StayGold. We applied the new monovalent StayGold tools to live-cell imaging experiments using spinning-disk laser-scanning confocal microscopy or structured illumination microscopy. We achieved cell-wide, high-spatiotemporal resolution and sustained imaging of dynamic subcellular events, including the targeting of endogenous condensin I to mitotic chromosomes, the movement of the Golgi apparatus and its membranous derivatives along microtubule networks, the distribution of cortical filamentous actin and the remolding of cristae membranes within mobile mitochondria.

Contact(s)
Atsushi Miyawaki
Organization(s)
RIKEN , Center for Brain Science , Laboratory for Cell Function Dynamics
Image Data Contributors
Quantitative Data Contributors

Download files
Download zipped files