Original image data of the manuscript by Yoshida and Hayashi (in press, preprint available https://doi.org/10.1101/2022.08.28.505615).
Described in the manuscript.
Yoshida, Kentaro, Hayashi, Shigeo (2022/01/01), Epidermal growth factor receptor signaling protects epithelia from morphogenetic instability and tissue damage in <em>Drosophila</em>, bioRxiv, 2022.08.28.505615
Published in Aug. 22, 2022
(Abstract) Dying cells in the epithelia communicate with neighboring cells to initiate coordinated cell removal to maintain epithelial integrity. Naturally occurring apoptotic cells are mostly extruded basally and engulfed by macrophages. Here, we investigated the role of Epidermal growth factor (EGF) receptor (EGFR) signaling in the maintenance of epithelial homeostasis. In Drosophila embryos, epithelial tissues undergoing groove formation preferentially enhanced extracellular signal-regulated kinases (ERK) signaling. In EGFR mutant embryos at stage 11, sporadic apical cell extrusion in the head initiates a cascade of apical extrusions of apoptotic and non-apoptotic cells that sweeps the entire ventral body wall. Here, we showed that clustered apoptosis, groove formation, and wounding sensitized EGFR mutant epithelia to initiate massive tissue disintegration. We further showed that tissue detachment from the vitelline membrane, which frequently occurs during morphogenetic processes, is a key trigger for the EGFR mutant phenotype. These findings indicate that, in addition to cell survival, EGFR plays a role in maintaining epithelial integrity, which is essential for protecting tissues from transient instability caused by morphogenetic movement and damage.Competing Interest StatementThe authors have declared no competing interest.
Kentaro Yoshida, Shigeo Hayashi (2023) Epidermal growth factor receptor signaling protects epithelia from morphogenetic instability and tissue damage in Drosophila., Development (Cambridge, England), Volume 150, Number 5
Published in 2023 Mar 1 (Electronic publication in March 9, 2023, midnight )
(Abstract) Dying cells in the epithelia communicate with neighboring cells to initiate coordinated cell removal to maintain epithelial integrity. Naturally occurring apoptotic cells are mostly extruded basally and engulfed by macrophages. Here, we have investigated the role of Epidermal growth factor (EGF) receptor (EGFR) signaling in the maintenance of epithelial homeostasis. In Drosophila embryos, epithelial tissues undergoing groove formation preferentially enhanced extracellular signal-regulated kinase (ERK) signaling. In EGFR mutant embryos at stage 11, sporadic apical cell extrusion in the head initiates a cascade of apical extrusions of apoptotic and non-apoptotic cells that sweeps the entire ventral body wall. Here, we show that this process is apoptosis dependent, and clustered apoptosis, groove formation, and wounding sensitize EGFR mutant epithelia to initiate massive tissue disintegration. We further show that tissue detachment from the vitelline membrane, which frequently occurs during morphogenetic processes, is a key trigger for the EGFR mutant phenotype. These findings indicate that, in addition to cell survival, EGFR plays a role in maintaining epithelial integrity, which is essential for protecting tissues from transient instability caused by morphogenetic movement and damage.(MeSH Terms)