{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"id": "8e3dd675-5eb9-4aff-80cd-4156a76d7797",
"metadata": {},
"outputs": [],
"source": [
"import glob\n",
"import numpy as np\n",
"import cv2\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"import pandas as pd\n",
"import os\n",
"import re\n",
"from scipy import signal\n",
"plt.rcParams['pdf.fonttype'] = 42\n"
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "7f8f3b7e-fc26-467b-9254-a51f2cda2619",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" promoter | \n",
" rel-value | \n",
" exp | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" T21 | \n",
" 1.000000 | \n",
" 1 | \n",
"
\n",
" \n",
" 1 | \n",
" T31 | \n",
" 0.519410 | \n",
" 1 | \n",
"
\n",
" \n",
" 2 | \n",
" L972 | \n",
" 0.478680 | \n",
" 1 | \n",
"
\n",
" \n",
" 3 | \n",
" T21 | \n",
" 1.000000 | \n",
" 2 | \n",
"
\n",
" \n",
" 4 | \n",
" T31 | \n",
" 0.445728 | \n",
" 2 | \n",
"
\n",
" \n",
" 5 | \n",
" L972 | \n",
" 1.171911 | \n",
" 2 | \n",
"
\n",
" \n",
" 6 | \n",
" T21 | \n",
" 1.000000 | \n",
" 3 | \n",
"
\n",
" \n",
" 7 | \n",
" T31 | \n",
" 0.446411 | \n",
" 3 | \n",
"
\n",
" \n",
" 8 | \n",
" L972 | \n",
" 0.362604 | \n",
" 3 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" promoter rel-value exp\n",
"0 T21 1.000000 1\n",
"1 T31 0.519410 1\n",
"2 L972 0.478680 1\n",
"3 T21 1.000000 2\n",
"4 T31 0.445728 2\n",
"5 L972 1.171911 2\n",
"6 T21 1.000000 3\n",
"7 T31 0.446411 3\n",
"8 L972 0.362604 3"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" rel-value | \n",
" exp | \n",
"
\n",
" \n",
" promoter | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" T21 | \n",
" 1.000000 | \n",
" 2.0 | \n",
"
\n",
" \n",
" T31 | \n",
" 0.470516 | \n",
" 2.0 | \n",
"
\n",
" \n",
" L972 | \n",
" 0.671065 | \n",
" 2.0 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" rel-value exp\n",
"promoter \n",
"T21 1.000000 2.0\n",
"T31 0.470516 2.0\n",
"L972 0.671065 2.0"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARIAAAFzCAYAAADyn4bcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAgX0lEQVR4nO3deZRU5bnv8e/Tczc0MjWDNA0OKBIFhwY1mohGo5gQNHFCjdETJSYxyYk3OUnOuSvjubnJzTpJTlY0XGIwUXPFRE0Egxo1wRllEJFJRERoEJln6PG5f9QGi6bprq63NlVl/z5r1WIP77vr6VrNr/f4lrk7IiIhCrJdgIjkPwWJiARTkIhIMAWJiARTkIhIMAWJiAQrynYBndW3b18fOnRotssQ6XLmzZu3yd2r2lqXd0EydOhQ5s6dm+0yRLocM3vncOt0aCMiwRQkIhIstiAxs6lmtsHMFh1m/XVmtjB6vWhmo+KqRUTiFeceye+BS9pZ/zZwnruPBH4ETImxFhGJUWwnW939WTMb2s76F5NmZwPVcdUiIvHKlas2nwcey3YRIlm1chbMvxe2roLmBqjoDSdeCqMmQlmPbFfXrqwHiZmdTyJIzm2nzSRgEkBNTc0RqkzkCFn6KDz9A9i0/NB1K2fBUz+A0z8LF/0QikqPeHmpyOpVGzMbCdwFTHD3zYdr5+5T3L3W3Wurqtq8H0YkP73yW3jg+rZDZL/G3fDyZLjnMmjYfcRK64ysBYmZ1QAPA59193Y+RZEPqGUzYeY3gRQHF1v9Ijz4+VhLSldshzZmdj8wFuhrZnXA94BiAHefDHwX6APcaWYATe5eG1c9Ijnn6R+Scojst/wxWP0y1JwZS0npivOqzcQO1t8M3BzX+4vktFXPw8al6fWdc1fOBYnubBXJhlfvS7/vkkegfmfmaskABYlINmw97PNvHWuuh53rM1dLBihIRLKhpTGsf3Ng/wxTkIhkQ0WfwP69M1NHhihIRLJh+CfS7zuoFioHZK6WDFCQiGTDKVdC2VHp9R2dexc7FSQi2VBcDrVp3FxWeTSc/OnM1xNIQSKSLef/Bxz3sdTbl1TCtQ/k5PM2ChKRbCksgon3w8lXdNy2RzXcNBMGjoy/rjQoSESyqagUrvgdfOE5OP1zUNzt4PWDz4JP3wVffTVnQwTA3Dt5r3+W1dbWukaRlw+sxn2we0PiPpHyXjl1mdfM5h3uebisj0ciIkmKy6Bn/o25o0MbEQmmIBGRYAoSEQmmIBGRYAoSEQmmIBGRYAoSEQmmIBGRYAoSEQmmIBGRYAoSEQmmIBGRYAoSEQmmIBGRYAoSEQmmIBGRYAoSEQmmIBGRYAoSEQmmIBGRYAoSEQmmIBGRYAoSEQmmIBGRYAoSEQmmIBGRYAoSEQnWdb/7t6kBNi6D+p1QXA59joOyozq1iR37Glm1aTd7G5rpXlbEsH6VlBR1Lps37d3Eul3raGxppGdpT4496ljMrFPbEMm2rhck21bD3Kkw/17Ys+n95cUVcPJnYMwtMHBUu5tYtHY797y0ihmvvcvexuYDy/t0K+Gq0YO57swaqntVHLa/u/PCuhd4YNkDPLf2OZr9/W0M6TGEK0+4ksuOv4yjSjsXbCLZYu6e7Ro6pba21ufOnZte5zm/g5nfhKT/uG0afQuM+ykUFB60uLnF+f70xdw7+512uxcWGD+c8CGuO3PIIet2Nuzk9lm3M/vd2e1uo7Kkkl+O/SVjBo5pv1aRI8TM5rl7bVvrus45kpenwN9u7zhEAOb8FqZ/9ZDF33poYYchAonA+Y+/LOIPL646aPnepr3c+uStHYYIJALni099kTnr53Rcr0iWdY0geXchPP6tzvVZcB+8+scDs3+eu4YH59V1ahM/mLGYxeu2H5j/xbxfsHDTwpT7N7Q08PVZX2dP455Ova/IkRZbkJjZVDPbYGaLDrPezOxXZrbCzBaa2elx1cIrU8BbOt/v5ckHJqe+sKrT3Vsc7n0psQezq2EXf13x105vY3v9dh5d+Win+4kcSXHukfweuKSd9eOAYdFrEvCbWKrYuw0WPZRe3/ULYc0rzHtnC0vf3ZHWJh5ZsI4d+xp55K1H2Nu0N61tPPDGA2n1EzlSYgsSd38W2NJOkwnAPZ4wG+hpZgMzXsiq5yHk0ODNv/PPZRvT7r63sZnZb23mubXPpb2N5VuXs373+rT7i8Qtm+dIBgFrkubromWZtW9bWP+929i+tzFoE9v3NrKzfmfQNnY0pLdHJHIkZPM+krbuumrzWrSZTSJx+ENNTU27G50xY8ZB80dvWcwZ6dUHwFur11LXuIq2y03N4oUL2FkaFiQvPPMCbxS+cdCy8ePHB21TJFOyuUdSBwxOmq8G1rXV0N2nuHutu9dWVVV16k12l4YdLe0qHUC/8rB7barKoW9h37T7l1BCj4IeQTWIxCmbQTIduCG6enMWsN3d3830m2zvdgzbyw+9MSwVTQVlrO19Nmf0hdKC9MJkcDenpjuMLh2dVn+AUaWjKLGStPuLxC3Oy7/3Ay8BJ5pZnZl93sxuNbNboyYzgZXACuC3wJfiqmVV1YVp9avrfQ7NheWUF0Ft53aEDjh3QCKAqouqGVSY3imgs0rPSu/NRY6Q2M6RuPvEDtY78OW43j9ZXZ9zGLLpH/Tc83bKffYVHcWKge+fg/h4tbNwC+xsTP1cSU13Z3S/9+fHVYzj7p1300wKd9dGTi85nYFFmb+YJZJJXeLO1paCEl4+/hvsKKtOqX19UQ9eGfYN9pa8f16jdxl8cYTTvTi1Q5yjK5wvnOQUJ33CxxYfy5XdrqSQwsN3THJS8Ulc3u3ylNqKZFOXefq3ofgoXhj+XYav/RPVm5+nuGXfIW1aKGR9zzNYWn01e0r7H7J+cHe4/RRn+juwcAu0+KF7J2WFzugqGD/EKW/j0x1ZOpLKgkqe3Pskq5pWtVlrpVVydtnZfLTsoxRYl8h6yXNdJkgAmgorWFRzI0sHXU315ufps2sZxc17aC4oY3t5Dav7jqW+pFe726gqh88Pd7bXw4vvOWv3GA3NUFYIxx/ljKmCsg4+1WOKj2FS8STea3qPufVz2dKyhWaaqbAKTio5iRHFIyi01PZaRHJBlwqS/ZoLy3mn30W80++itLdxVCmMq4HD3PqSkv5F/flE0SfS7i+SK7TfLCLBFCQiEkxBIiLBFCQiEkxBIiLBFCQiEkxBIiLBFCQiEkxBIiLBFCQiEkxBIiLBFCQiOWbs2LGMHTs222V0ioJERIIpSEQkmIJERIIpSEQkmIJERIIpSEQkmIJERIIpSEQkmIJERIIpSEQkmIJERIIpSEQkmIJERIIpSEQkmIJERIIpSEQkmIJERIIpSEQkmIJERIIpSEQkmIJERIIpSEQkmIJERIIpSEQkmIJERIIpSEQkmIJERIIpSEQkWKxBYmaXmNkbZrbCzL7dxvqjzGyGmb1mZovN7KY46xGReMQWJGZWCNwBjANGABPNbESrZl8Glrj7KGAs8F9mVhJXTSISjzj3SMYAK9x9pbs3ANOACa3aOFBpZgZ0B7YATTHWJCIxiDNIBgFrkubromXJfg2cBKwDXge+5u4tMdYkIjGIM0isjWXeav5iYAFwNHAq8Gsz63HIhswmmdlcM5u7cePGTNcpIoHiDJI6YHDSfDWJPY9kNwEPe8IK4G1geOsNufsUd69199qqqqrYChaR9MQZJHOAYWZ2THQC9Rpgeqs2q4GPAZhZf+BEYGWMNYlIDIri2rC7N5nZbcATQCEw1d0Xm9mt0frJwI+A35vZ6yQOhb7l7pviqklE4hFbkAC4+0xgZqtlk5Om1wEfj7MGEYmf7mwVkWAKEhEJpiARkWAKEhEJpiARkWAKEhEJpiARkWAKEhEJpiARkWAKEhEJpiARkWAKEhEJpiARkWAKEhEJpiARkWAKEhEJpiARkWAKEhEJpiARkWAKEhEJpiARkWAKEhEJpiARkWAKEhEJ1qkgMbNucRUiIvkrpSAxsw+b2RJgaTQ/yszujLUyEckbqe6R/AK4GNgM4O6vAR+NqygRyS8pH9q4+5pWi5ozXIuI5KlUv0R8jZl9GHAzKwG+SnSYIyKSapDcCvw3MAioA/4OfDmuokRyxYwZM474e27evDlr7z1+/Pi0+qUUJO6+CbgurXcQkQ+8lILEzO4GvPVyd/+XjFckInkn1UObR5Omy4DLgXWZL0dE8lGqhzYPJc+b2f3AU7FUJCJ5J91b5IcBNZksRETyV6rnSHaSOEdi0b/rgW/FWJeI5JFUD20q4y5ERPJXu0FiZqe3t97d52e2HBHJRx3tkfxXO+scuCCDtYhInmo3SNz9/CNViIjkr1TvI8HMTgZGkLiPBAB3vyeOokQkv6R61eZ7wFgSQTITGAc8DyhIRCTl+0iuAD4GrHf3m4BRQGlsVYlIXkk1SPa6ewvQZGY9gA3AsfGVJSL5JNUgmWtmPYHfAvOA+cArHXUys0vM7A0zW2Fm3z5Mm7FmtsDMFpvZM6kWLiK5I9Ub0r4UTU42s8eBHu6+sL0+ZlYI3AFcRGIMkzlmNt3dlyS16QncCVzi7qvNrF8aP4OIZFmqgz8/YmbXmlk3d1/VUYhExgAr3H2luzcA04AJrdpcCzzs7qsB3H1DZ4oXkdyQ6qHNz4FzgSVm9mczu8LMyjroMwhIHue1LlqW7ASgl5nNMrN5ZnZDivWISA5J9dDmGeCZ6HDlAuAWYCrQo51u1tam2nj/M0hcESoHXjKz2e6+/KANmU0CJgHU1OihY5Fck/IwAmZWDnyGxPito4E/dNClDhicNF/NoYMh1QGPu/vuaDjHZ0lcWj6Iu09x91p3r62qqkq1ZBE5QlI9R/IAiVHjLyBxAvU4d/9KB93mAMPM7Jho5PlrgOmt2jwCfMTMisysAjgTjU4vkndSvUX+buBad0/5u2zcvcnMbgOeAAqBqe6+2MxujdZPdvel0VWghUALcJe7L+rcjyAi2ZbqOZLH90+b2Xx3b3d4gaR+M0ncUp+8bHKr+Z8BP0tleyKSm9IZarGtk6gi0oWlEyR/y3gVIpLXOh0k7v4/4yhERPJXR0Mt7h/0Gd4/pDkwCLS7t3cfiYh0ER2NkKZBn0WkQ525Ie1cM7spmu5rZsfEV5aI5JNUb0j7HonvsflOtKgEuC+uokQkv6S6R3I58ClgN4C7rwN02CMiQOp3tja4u5uZA5hZtxhrkg+QzbvqmTZnDU8tfY9texopLjRqeldw9egaPja8HwUFui3pg6DDIDEzAx41s/8L9DSzW4B/ITFamkib9jQ08f3pi/nrq+toaG45aN3y93bx1NINDOpZzr9dciITTm09uoTkmw6DJNoTuYzEOZIdwInAd939yZhrkzy1Y18j19/1Mgvrtrfbbu22vXxt2gLWb9/HF8477ghVJ3FI9dDmJWCbu38zzmLkg+FL983vMESS/e/HljGoVzmfHHl0jFVJnFI92Xo+iUGH3jKzhftfcRYm+emltzbz/IpNne738yeXd9xIclaqeyTjYq1CPjDum/1OWv1WbtzNCys2cc7xfTNckRwJqQ4jkN5vh3QpO/Y18vcl69Pu/+C8OgVJnkrn6V+RNm3YUU9jc+theVO3dtveDFYjR5KCRDKmuSX9EAFoanWZWPKHgkQyple34qD+vbvp66TzlYJEMqZfZRm1Q3ql3f/SUwZksJr85QVFeFEpHraDd0SletVGJCWfPXsIc9/Z2ul+vbuV8ImRA2OoKD9srYcX1hsvvQe7xv0nAF9/yTm5N3xkgHNiz+zW1xEFiWTUuJMH8rNeb1C3tXMnTm84ewilRYUxVZW7Whz+8rbx7LvQ0mo45GY3XtsMr202jq5wbjnJ6dvR91tmiQ5tJKNKigq4+8bR9KxI/XzJx0f056sXDIuxqtzkDvcsN2a9a4eESGvr9hg/X2hszNELWwoSybhh/St58NazOaZv+w+Jm8HEMYO587rTu+RTwE+uhXmbUv+5dzYak5cYAVfYY6NDG4nF8f0qeer28/jHsg3cO/sdnntz44GTh0eVF3PFGdVcf9aQDsPmg6qpBWat63x4bthnLNzsnJZj9+0pSCQ2hQXGRSP6c9GI/uxrbObCSz+FeTOz/v4YhV1wDyTZgs2JPYx0PLfeOK1vbu2W6NBGjoiy4kKKGndT2LSvy4cIwKudOKRp7c3txs6GDBaTAQoSkSzY2RjWf1dTZurIFB3aSLu27dvGU6ufYuPejQBUlVdxYc2F9CzrmfpGmhqg7hU+0ncbTW6w8Q2oOjGegvOEBe6U5do+nYJE2rR863L+sPgPPLHqCeqb6w9a95NXfsLFQy/mhhE3cGLvdgJh22qY8zt49T7Ys4kfnRwtv2MMVI+G0TfDhy6Hoq53a3zPkvT7FpjTI6B/HBQkXdSMGTMOu25RwyL+tOtPNNH2/nN9cz3T35rOzLdmclX3qzi55ORD2gzYOofT376TQj/MPnzdHKibw7YnfsLLx3+DhuKj0vo5UjV+/PhYt99ZZ/Zz5qd5nuSU3lCRY/9zdY5EDvJm45tM2zXtsCGSrIkmpu2axpuNbx60vP+2edSu/NXhQyRJzz1v8+HlP6aoaXfaNeejk3pC37L0rrx8ZEBuXbEBBYkkafEWHt79MC2k/jh/Cy08tOshmr0ZgKKm3Zz+9m8wUv9lr9y3lg/V/bHT9eYzMxg3uPOBcFyP3HzuRkEiByxpXML2ltQHbd5vh+9gaeNSAGo2P0tRy75Ob2PQlpcobtrV6X75bEy/zoXJwArnluG5tzcCChJJ8sq+V8L6ujNk49Np9S/0RgZveibt989Xl9Y41xzXQmXx4QOiAOe0Ps7XT3ECh3yJTY6dspFsqmuuC+pb3rCZ7vXpj9latXMRKwd8Iu3++eqcAYmTrws2Oy+9Z7z57lYoKGRA7x6M7A3nDHB65fiFLQWJHNDg6d8u2eANFDXvCXr/4sD++ayoAGqroLbK+ff/938A+Pcf/zjLVaVOhzZyQKml/2evxEpoKQi7uaG5IMf/7MphKUjkgJqimqC+e0t601hYkfY2dpbpO4DzlYJEDjiz9My0+55VehYtBSWs6X1u2ttYVfWxtPtKdilI5IATik+gV0HnB2/uVdCLE4pPAOCdfhem9d6buw9nV3l1Wn0l+xQkckCBFXBltysp6sQ5+CKKuLLblRRY4ldpV9nRrOx3cafet6mglMXV13aqj+QWBYkcZGjxUK7vfj2ldHzis4QSru9+PUOLhx60fHH1dazu89GU3q+poIy5x/0r27sdm065kiN0+VcOcULJCdx21G28uO9FXm14lX1+8J2qZVbGaSWn8eGyD9OnsM+hG7ACXhs6ia3dhnHshsep3Lf2kCYtFLK+5xksH3gZOyvSP8kruUFBIm3qU9iH8d3Gc3HFxSxrWMZO3wlApVUyvGQ4Jdbxpd7VVeezuup8+uxcwoBt8ylu2kVLQRF7Svqxps9HqC9J/8u0Psh+nEf3j+wXa5CY2SXAfwOFwF3u/pPDtBsNzAaudvcH46xJOqfEShhZOjJoG5srR7C5ckSGKpJcFNs5EjMrBO4AxgEjgIlmdshvU9Tup8ATcdUiIvGK82TrGGCFu6909wZgGjChjXZfAR4CNsRYi4jEKM4gGQSsSZqvi5YdYGaDgMuByTHWISIxizNI2hpHrvWz0r8EvuUejYpzuA2ZTTKzuWY2d+PGjZmqT0QyJM6TrXXA4KT5amBdqza1wDRLDKndF7jUzJrc/a/Jjdx9CjAFoLa2NjdHdhHJgC3NW9jSsoVmb6aioIKjC4+m0HL/y9XjDJI5wDAzOwZYC1wDHHT7orsfs3/azH4PPNo6REQ+6Jq9mSWNS5i9bzZvN7190Loe1oPRZaMZXTqaHgU9slRhx2ILEndvMrPbSFyNKQSmuvtiM7s1Wq/zItLl7W7Zzb277mV10+o21+/wHTy992me2/sc13S/huElw49whamJ9T4Sd58JzGy1rM0Acfcb46xFJNfUez1Td07l3eZ3O2zbQAP37bqPG7rfwAklJxyB6jpHz9qIZMnMPTNTCpH9Wmjh/t33H/LIQi5QkIhkwd6WvSyoX9DpfvVez/z6+ZkvKJCCRCQL5tXPo5H0vkn85X0vZ7iacAoSkSx4s+nNjhsdxsaWjWxr3pa5YjJAQSKSBfvS+BKxg/rn2HkSBYlIFhRZ2AXTYsutb8pSkIhkQb/Cfmn3LaU0525OU5CIZMGY0jFp9z219FTtkYgIDCwamPb3CJ1VelaGqwmnIBHJkkvLL+3UiP2Q+O6h/kX9Y6oofQoSkSypKa7h2u7XUkxqhymjSkYxvmJ8zFWlR0EikkXDS4ZzS49bOLH4RKzNIXygd0FvPlnxSa7qdtWB7w/KNRpFXiTLqouq+Vzl59javJV59fMS45HQTLmVM6J4BMOKhxGN2ZOzFCQiOaJXYS8urEjvK0+zLTf3k0QkryhIRCSYgkREgilIRCSYgkREgilIRCSYgkREgilIRCSYgkREgilIRCSYgkREgilIRCSYgkREgilIRCSYgkREgilIRCSYgkREgilIRCSYgkREgilIRCSYgkREgilIRCSYgkREgilIRCSYgkREgilIRCSYgkREgilIRCSYgkREgilIRCRYrEFiZpeY2RtmtsLMvt3G+uvMbGH0etHMRsVZj4jEI7YgMbNC4A5gHDACmGhmI1o1exs4z91HAj8CpsRVj4jEJ849kjHACndf6e4NwDRgQnIDd3/R3bdGs7OB6hjrEZGYxBkkg4A1SfN10bLD+TzwWIz1iEhMimLctrWxzNtsaHY+iSA59zDrJwGTAGpqajJVn4hkSJx7JHXA4KT5amBd60ZmNhK4C5jg7pvb2pC7T3H3WnevraqqiqVYEUlfnEEyBxhmZseYWQlwDTA9uYGZ1QAPA5919+Ux1iIiMYrt0Mbdm8zsNuAJoBCY6u6LzezWaP1k4LtAH+BOMwNocvfauGoSkXjEeY4Ed58JzGy1bHLS9M3AzXHWICLx052tIhJMQSIiwRQkIhJMQSIiwRQkIhJMQSIiwRQkIhJMQSIiwRQkIhJMQSIiwRQkIhJMQSIiwRQkIhJMQSIiwRQkIhJMQSIiwRQkIhJMQSIiwRQkIhJMQSIiwRQkIhJMQSIiwRQkIhJMQSIiwRQkIhJMQSIiwRQkIhJMQSIiwRQkIhJMQSIiwRQkIhJMQSIiwRQkIhJMQSIiwRQkIhJMQSIiwRQkIhJMQSIiwRQkIhJMQSIiwRQkIhJMQSIiwRQkIhJMQSIiwWINEjO7xMzeMLMVZvbtNtabmf0qWr/QzE6Psx4RiUdsQWJmhcAdwDhgBDDRzEa0ajYOGBa9JgG/iaseEYlPnHskY4AV7r7S3RuAacCEVm0mAPd4wmygp5kNjLEmEYlBnEEyCFiTNF8XLetsGxHJcUUxbtvaWOZptMHMJpE49AHYZWZvBNaWaX2BTdkuIk/os0pNLn5OQw63Is4gqQMGJ81XA+vSaIO7TwGmZLrATDGzue5em+068oE+q9Tk2+cU56HNHGCYmR1jZiXANcD0Vm2mAzdEV2/OAra7+7sx1iQiMYhtj8Tdm8zsNuAJoBCY6u6LzezWaP1kYCZwKbAC2APcFFc9IhIfcz/klIR0kplNig6/pAP6rFKTb5+TgkREgukWeREJpiDpgJn1MbMF0Wu9ma2Npt8ys3+a2VIzW2xmX0vqc2W0rMXM8ubMe4h2PqdlZjbfzF6LPpMfJPXpUp+Tme1qY9kQM3s6ekRklplVR8vPT/o8F5jZPjO7LFr3x+jRk0VmNtXMio/wj3Iod9crxRfwfeAb0fRA4PRouhJYDoyI5k8CTgRmAbXZrjvLn5MB3aPpYuBl4Kyu+DkBu9pY9mfgc9H0BcC9bbTpDWwBKqL5S6PP1YD7gS9m+2eL8z6SDzRPXKZ+N5reaWZLSdyVu8TdlwKYtXW/Xdfiid/8/X+Ji6OXR+v0OSWeQ/t6NP1P4K9ttLkCeMzd9wC4+8z9K8zsFRL3X2WVDm0ywMyGAqeR+GsrrZhZoZktADYAT7q7Pqf3vQZ8Jpq+HKg0sz6t2lxDYs/jINEhzWeBx2OtMAUKkkBm1h14CPhXd9+R7Xpykbs3u/upJP5yjjGzk7NcUi75BnCemb0KnAesBZr2r4weYj2FxP1Yrd0JPOvuzx2JQtujQ5sA0V+Eh4A/uvvD2a4n17n7NjObBVwCLMpyOTnB3dcBn4YDf5Q+4+7bk5pcBfzF3RuT+5nZ94Aq4AtHqtb2aI8kTZY4sP8dsNTdf57tenKVmVWZWc9ouhy4EFiW1aJyiJn1NbP9/w+/A0xt1WQirQ5rzOxm4GJgoru3xF9lxxQk6TuHxPHpBUmX6C4FMLPLzawOOBv4m5m1tVvaVQwE/mlmC0k8f/Wkuz8KXfJzqjCzuqTX7cBY4A0zWw70B/7X/sbRubfBwDOttjM5avtS9Hv33SNSfTt0Z6uIBNMeiYgEU5CISDAFiYgEU5CISDAFiYgEU5BIzjGzU/dfSpf8oCCRtEVfghaHU0k84ZoyM9Nd2lmkIJE2mdnQaCyRP0RjZTxoZhVmtsrMvmtmzwNXmtlEM3s9Ghvjp0n9d5nZT81snpk9ZWZjovE2VprZp6I2ZWZ2d9T/1WgMjhLgh8DV0c1WV5tZt2jcjTlRuwlR/xvN7M9mNgP4ezY+J4lkexwDvXLzBQwl8bj/OdH8VBIPmK0C/i1adjSwmsQzH0XAP4DLonUOjIum/0LiP3oxMApYEC3/H8Dd0fTwaFtlwI3Ar5Nq+TFwfTTdk8TYL92idnVA72x/Xl39pT0Sac8ad38hmr4PODeafiD6dzQwy903unsT8Efgo9G6Bt5/vP114BlPPHj2OomQItrevQDuvgx4BzihjTo+Dnw7GopgFomwqYnWPenuW9L/ESUTdFwp7Wn9/MT++d3Rv+2NSNTo0S4E0ALUA7h7S9L5jFRHNDIST8Ue9A2LZnZmUi2SRdojkfbUmNnZ0fRE4PlW618mMZZG3+jE60QOfcCsPc8C1wGY2Qkk9jLeAHaSGL5yvyeAr0RPXGNmp3X2B5F4KUikPUuBz0VP7vYGfpO80hPDTX6HxBCBrwHz3f2RTmz/TqDQzF4ncbh0o7vXR9sbsf9kK/AjEudXFprZomhecoie/pU2RY+wP+ruGs1MOqQ9EhEJpj0SEQmmPRIRCaYgEZFgChIRCaYgEZFgChIRCaYgEZFg/x8Czj+W8LLoCwAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"data_df = pd.read_csv(\"./_results_plot.csv\")\n",
"display(data_df)\n",
"display(data_df.groupby(\"promoter\", sort=False).mean())\n",
"\n",
"fig, ax = plt.subplots(1, 1, figsize=(4, 6))\n",
"x = np.array([\"T21\", \"T31\", \"L972\"])\n",
"x_pos = np.arange(len(x))\n",
"y = data_df.groupby(\"promoter\", sort=False).mean()[\"rel-value\"]\n",
"e = data_df.groupby(\"promoter\", sort=False).sem()[\"rel-value\"]\n",
"\n",
"sns.swarmplot(x=\"promoter\", y=\"rel-value\", data=data_df, hue=\"exp\", s=16, ax=ax)\n",
"ax.bar(x_pos, y, yerr=e, tick_label=x, color=\"black\", alpha=0.3)\n",
"plt.legend([], [], frameon=False)\n",
"fig.savefig(\"./__results_cdc25.png\")\n",
"fig.savefig(\"./__results_cdc25.pdf\")\n"
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "9d303e7e-d140-479c-bd43-64d276b570a0",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" promoter | \n",
" rel-value | \n",
" exp | \n",
" Unnamed: 3 | \n",
" Unnamed: 4 | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" A21 | \n",
" 1.000000 | \n",
" 1 | \n",
" NaN | \n",
" NaN | \n",
"
\n",
" \n",
" 1 | \n",
" A31 | \n",
" 0.963179 | \n",
" 1 | \n",
" NaN | \n",
" NaN | \n",
"
\n",
" \n",
" 2 | \n",
" L972 | \n",
" 0.090469 | \n",
" 1 | \n",
" NaN | \n",
" NaN | \n",
"
\n",
" \n",
" 3 | \n",
" A21 | \n",
" 1.000000 | \n",
" 2 | \n",
" NaN | \n",
" 0.152834 | \n",
"
\n",
" \n",
" 4 | \n",
" A31 | \n",
" 0.919453 | \n",
" 2 | \n",
" NaN | \n",
" NaN | \n",
"
\n",
" \n",
" 5 | \n",
" L972 | \n",
" 0.290478 | \n",
" 2 | \n",
" NaN | \n",
" NaN | \n",
"
\n",
" \n",
" 6 | \n",
" A21 | \n",
" 1.000000 | \n",
" 3 | \n",
" NaN | \n",
" NaN | \n",
"
\n",
" \n",
" 7 | \n",
" A31 | \n",
" 0.873767 | \n",
" 3 | \n",
" NaN | \n",
" NaN | \n",
"
\n",
" \n",
" 8 | \n",
" L972 | \n",
" 0.077555 | \n",
" 3 | \n",
" NaN | \n",
" NaN | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" promoter rel-value exp Unnamed: 3 Unnamed: 4\n",
"0 A21 1.000000 1 NaN NaN\n",
"1 A31 0.963179 1 NaN NaN\n",
"2 L972 0.090469 1 NaN NaN\n",
"3 A21 1.000000 2 NaN 0.152834\n",
"4 A31 0.919453 2 NaN NaN\n",
"5 L972 0.290478 2 NaN NaN\n",
"6 A21 1.000000 3 NaN NaN\n",
"7 A31 0.873767 3 NaN NaN\n",
"8 L972 0.077555 3 NaN NaN"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" rel-value | \n",
" exp | \n",
" Unnamed: 3 | \n",
" Unnamed: 4 | \n",
"
\n",
" \n",
" promoter | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" A21 | \n",
" 1.000000 | \n",
" 2.0 | \n",
" NaN | \n",
" 0.152834 | \n",
"
\n",
" \n",
" A31 | \n",
" 0.918800 | \n",
" 2.0 | \n",
" NaN | \n",
" NaN | \n",
"
\n",
" \n",
" L972 | \n",
" 0.152834 | \n",
" 2.0 | \n",
" NaN | \n",
" NaN | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" rel-value exp Unnamed: 3 Unnamed: 4\n",
"promoter \n",
"A21 1.000000 2.0 NaN 0.152834\n",
"A31 0.918800 2.0 NaN NaN\n",
"L972 0.152834 2.0 NaN NaN"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARIAAAFzCAYAAADyn4bcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAfsElEQVR4nO3deZgcdb3v8fd3ZtKTTCb7TPYVDcEQIOCQoKIEXEhYDCg+JKAICBGvqPd4zxW8z1XP0ed4ro9Xj/qI5OZ4guxxQyUQQUCIgCRkZYkkMGadLGYjyySZ/Xv/6Ap0Jp2Z7v51TU+Tz+t5+klX1e9X/Z1K8pmq6qpfmbsjIhKipNAFiEjxU5CISDAFiYgEU5CISDAFiYgEU5CISLCyQheQraqqKh87dmyhyxA56axYsWK3u1enW1Z0QTJ27FiWL19e6DJETjpmtulEy3RoIyLBFCQiEkxBIiLBFCQiEkxBIiLBiu5bm7w4sA2W3wWbnofGA9CjAoaeATU3wpDTM1rF2h0HuG/JJl7bfpAjTa1U9izjvHEDuWbqGIb265nROpZsX8JDbzzE1oNbaW5rpl95P6aNmsbMd82kMlEZ8hOKdCkrtmEEampqPOevfw/+Axb9M6x9FLw1fZvR74MZ34NhZ6Vd/OrW/fzLw2tYvunNtMvLSoyPThzCv848ncF90gfKU5uf4scrf8yG/RvSLu9V1otPjP8EX33vV0mUJjr/uUS6gJmtcPeatMtOmiDZuwHu/jjs39x520QlzH4Qxn3omNl//ftubrp7OYebThBCKUb078WCOecxamDFMfMXrF3Ad5d+F6fz7X7O4HO48yN3UtGjotO2InHrKEhOjnMkjQfh/qsyCxGApnpYcC3sev2tWbU76/n8PSsyChGArfuO8Nm7XqS+seWteU9vfjrjEAFYuXMlt/3ltsxqFimgkyNIVt0Pe2qz69N4AJ774VuTP3u6loMpoZCJ9bsO8ZvlW96a/smqn2QcIkc9U/cMq3euzqqPSFeLLUjMbL6Z7TSzV0+w3MzsJ2ZWa2Yvm9k5cdXC8v/Krd+a38Hhvbx5qIlHXtme0yruW5rcC1q2Yxm1+7IMs8iCdQty6ifSVeLcI/kFML2D5TOA8dFrDnBnLFVsXgq7X++8XTotDfDKr/n96q00tbTltIranfWs2PQmv6/9fW41AE9sfIJDzYdy7i8St9iCxN3/AuztoMlM4B5PWgL0N7NheS9k3wnvM8rMm5vYsvdI0Crq3jxM3cG6nPs3tTWx8/DOoBpE4lTI60hGAFtSpuuieccdQ5jZHJJ7LYwePbrDlS5cuPCY6ZG7l3F2QJEb/v46bzSvByzndSxbsZJd5bsCqoAn//wkQ8uGHjPv8ssvD1qnSL4U8mRruv+Zac9Euvs8d69x95rq6rTDIZxQU1mfXGpL6V9JZY+gVdC7DHqX9A5aR0WJvgKW7quQQVIHjEqZHglsy/eH7OnzHppLc/9PuKN/DWcOyv1am16lzqn9YGJiYs7rGFU6ir4lfXPuLxK3QgbJw8B10bc35wH73T23r0Y60Fraky0Dz8+p797e4zlQMYaRvWFcn9zCZMpgSJTCWYmz6GmZXTrf3tSeU3Pq192s2PQmf1i9lYdW1vH02p00NGd2TY50f7GdIzGzB4FpQJWZ1QHfAnoAuPtcYBFwCVALHAZuiKuWjYM/wpjdf6bUs7wOZMiMt95fNNz5r3XZnScpM+eDQ5MB1MN6MLV8KosbFme1jr7WlzMTZ2bVpzupb2zhN8u3cN/SzdTurD9mWb9ePfjkOSO57n1jGFsVdugnhRVbkLj77E6WO/DFuD4/1aGew1k9dg7nbLgTy/CCsNohl7J9wJS3pidXwYfrnae2ZhYmhnPteGdIylHVR3p9hG2t23ij+Y2M1lFOOdf1uY4yK857K7fsPcxn57/I+t3pv7ref6SZ+c9v4P6lm/iPqydzyRn5/9JOusbJcWUrsG3g+1l+ypdpKSnvsF0bJawd/kleG3l8Dl4x1rl0dBslnYRRosS58TSnpt154VIr5TOVn8loD6NfST9u7nszw8uGd9q2O9p5oIFZ85acMERSNba08aUHV/HE3/7RBZVJHIrzV12Odgw4lyf6TGTUnmcZu+spKhvfPiXTUNaPzVXT2FR9EQ2JQSdcx/RRMGWw8/wOeOEfcLD57T2Uwb2ShzJTB0OvE2zZMitjVuUsPtTyIZY2LuWlxpdooumt5WPKxjC1fCqTEpOKdk8E4Bt/eJWt+zK//qa1zfmnX65myf/6MJXlxftzn6xOur+xlrLebBgynQ1DplPevI+y1sO0lpTT2KM/bqUZrWNgOVw+xrlkNBxocppak8HRN4s7/oeXDefKsiu5rOIy6tvqaaWVCqt4R3zNu23fEZ58LfsL6OobW3hoZR3XvW9s/ouSWJ00hzbpNPboz6Gew2lIDMo4RFKVGgwohyEV2YVIqh7WgwGlA6gqrXpHhAjAA0s309qW27dc974QeCWyFMRJHSQSjyXr9+Tc942d9eypb8xjNdIVFCSSd/VZDrfQ3sGGsP7S9RQkknc9e2R/mJiqIhHWX7qegkTy7j3Dcr+/qbpPOYMqO/6KXrofBYnk3bVTx+Tcd9a5oygtyf1OaykMBYnk3aQR/Th7dP+s+5WWGNdM7XiYCOmeFCQSi3+5/HR6ZXmu5J8+Mp5h/XrFVJHE6aS7IE1i4A7rn4bVD8C+LdDWwlkVg5j3/k/whSX9qW/s/C7fz19wCrdeNL4LipU4KEgkzKsPwdP/lnaU/g/yOL8rfw93DPwii3ZVpR339pzR/bn5g6cwQzfsFTUFieTuuR/Bk9/qsMn4ptf4UdOtfOPUK/jYHwfRlOjHFVd+kgG9E1x8+hBOH96va2qVWClIJDcv/6rTEEk1aP3v+XbfgXx/3Ri+c0Xm/aQ46GSrZK+tDZ76dtbdLh22l9EVDTEUJIWmIJHsvf4Y7N/Sebs0Pj58d56Lke5AQSLZW3Vfzl2nD90LrbqX5p1GQSLZe3Njzl0ry1qhYV/eSpHuQSdbT1LtHySWjQv376Uy4LOfeOxRGhIDA9aQPT1MLF7aI5GsNZXlHiNtDs1lGjH+nUZBIlnb0f+cnPu+sLMnrZ0MwC3FR0EiWdtSNY1Wy+05pr/8e8hBkXRXChLJWlNZH+oGfSDrfhsPlrF4u27KeydSkEhO1oz6DG9WvCvj9k2llXz5hWra0j47XoqdgkRy0lpSzpJTb2Nn384f9rU/MYDvj7mIDVN7wEXwfMPzHGrr/MFZUjz09a/krKW0gqXjv8bA+nWM2fkkw/YtO+b5ypsqRvBAnwp+1auBFl8Nk5PzHz38KI8ffpxJiUlc2OtCqkur065fioeCRILtrZzA3soJvNx6hJ7N+6GthYXNz/Nk60tAI6Q5nGmhhdVNq1nbvJZPV36aU3qc0uV1S/7o0EbyprW0F4d6DuW3vBqFSOcavIF7D97L9pbtnTeWbktBInm1u3U3zzY8m1WfRhp59PCjMVUkXUFBInm1tGEpTvaP61zfsp6drdk/L1i6BwWJ5E2Lt7CyaWXO/V9seDGP1UhXUpBI3uxv288RP5Jz/x2tO/JYjXQlBYnkTZM3BfVv9uY8VSJdTUEiedPTeha0vxSOgkTypl9JPwaW5D7OyLge4/JYjXQlBYnkTYmVMKV8Sk59yyijprwmzxVJV1GQSF7VlNfQg+yHGJiUmERliYYYKFYKEsmripIKrqq8CsviLt+qkiouq7gsxqokbgoSybszEmfwqd6fopTOHyI+tHQon+v7OSpKKrqgMomLbtqTWEwun8zIspEsaVjCyqaVNPixD8YaVjqMqeVTmVw+mYQlClSl5IuCRGJTVVrFZb0v42MVH2ND8waO+BFKrZSBJQMZUTai0OVJHilIJHYJSzAhMaHQZUiMdI5ERIIpSEQkmIJERIIpSEQkmIJERIIpSEQkmIJERIIpSEQkmIJERIIpSEQkWKxBYmbTzWydmdWa2e1plvczs4Vm9pKZrTGzG+KsR0TiEVuQmFkpcAcwA5gIzDazie2afRH4m7ufBUwDfmCmW0FFik2ceyRTgFp3X+/uTcACYGa7Ng70MTMDKoG9QAsiUlTiDJIRwJaU6bpoXqqfAu8BtgGvAF9x97b2KzKzOWa23MyW79q1K656RSRHcQZJurH22j/L8WJgNTAcmAz81Mz6HtfJfZ6717h7TXV1db7rFJFAcQZJHTAqZXokyT2PVDcAD3lSLbABOC3GmkQkBnEGyTJgvJmNi06gzgIebtdmM/BhADMbAkwA1sdYk4jEILYR0ty9xcxuBR4HSoH57r7GzG6Jls8FvgP8wsxeIXkodJu7746rJhGJR6xDLbr7ImBRu3lzU95vAz4WZw0iEj9d2SoiwRQkIhJMQSIiwRQkIhJMQSIiwRQkIhJMQSIiwRQkIhJMQSIiwRQkIhJMQSIiwRQkIhJMQSIiwRQkIhJMQSIiwRQkIhJMQSIiwRQkIhJMQSIiwRQkIhJMQSIiwRQkIhJMQSIiwRQkIhJMQSIiwRQkIhJMQSIiwRQkIhJMQSIiwRQkIhJMQSIiwRQkIhJMQSIiwRQkIhJMQSIiwRQkIhJMQSIiwRQkIhJMQSIiwRQkIhJMQSIiwRQkIhJMQSIiwRQkIhJMQSIiwRQkIhJMQSIiwRQkIhJMQSIiwRQkIhJMQSIiwRQkIhJMQSIiwWINEjObbmbrzKzWzG4/QZtpZrbazNaY2eI46xGReJTFtWIzKwXuAD4K1AHLzOxhd/9bSpv+wM+A6e6+2cwGx1WPiMQnzj2SKUCtu6939yZgATCzXZtrgIfcfTOAu++MsR4RiUmcQTIC2JIyXRfNS3UqMMDMnjGzFWZ2XboVmdkcM1tuZst37doVU7kikqs4g8TSzPN202XAe4FLgYuBb5jZqcd1cp/n7jXuXlNdXZ3/SkUkSGznSEjugYxKmR4JbEvTZre7HwIOmdlfgLOA12OsS0TyLM49kmXAeDMbZ2YJYBbwcLs2fwA+aGZlZlYBTAVei7EmEYlBVnskZtY72nvolLu3mNmtwONAKTDf3deY2S3R8rnu/pqZPQa8DLQBP3f3V7P7EUSk0DIKEjN7P/BzoBIYbWZnAZ939//WUT93XwQsajdvbrvp7wPfz6ZoEeleMj20+Q+SJ0P3ALj7S8CH4ipKRIpLxudI3H1Lu1mtea5FRIpUpudItkSHNx6dOP0yOikqIpFM90huAb5I8oKyOmByNC0iktkeibvvBq6NuRYRKVKZfmtzF8dflYq735j3ikSk6GR6juSRlPc9gSs5/ipVETlJZXpo89vUaTN7EHgylopEpOjkeon8eGB0PgsRkeKV6TmSgyTPkVj05w7gthjrEpEikumhTZ+4CxGR4tVhkJjZOR0td/eV+S1HRIpRZ3skP+hgmQMX5bEWESlSHQaJu1/YVYWISPHKeDwSM5sETCR5HQkA7n5PHEWJSHHJ9FubbwHTSAbJImAG8BygIBGRjK8juQr4MLDD3W8gOa5qeWxViUhRyTRIjrh7G9BiZn2BncAp8ZUlIsUk03Mky6On4v0nsAKoB16MqygRKS6ZXpB2dGzWudFgzX3d/eX4yhKRYpLRoY2Z/cHMrolGkd+oEBGRVJmeI/khcD7wNzP7tZldZWY9O+skIieHTA9tFgOLzayU5NWsNwPzgb4x1iYiRSKbC9J6AZcDVwPnAHfHVZSIFJdML0j7JcnHaT4G3AE8E30dLCKS8R7JXcA17q5n2YjIcTI62erujx0NETPT0AEicoxchlq0vFchIkUtlyB5NO9ViEhRyzpI3P1/x1GIiBSvzoZaPDroM7x9SPPWINDurutIRKTTEdI06LOIdCrjQxszO9/MbojeV5nZuPjKEpFikulNe98i+Rybr0ezEsB9cRUlIsUl0z2SK4GPA4cA3H0boMMeEQEyD5Imd3eiE69m1ju+kkSk2HQaJGZmwCNm9v+A/mZ2M8kHiP9n3MWJSHHo9F4bd3czu4LkOZIDwATgm+7+RMy1iUiRyPSmvReAfe7+P+MsRkSKU6ZBciHweTPbRHTCFcDdz4ylKhEpKpkGyYxYqxCRopbpUIub4i5ERIpXLnf/iogcQ0EiIsEUJCISTEEiIsEUJCISTEEiIsEUJCISTEEiIsEUJCISTEEiIsEUJCISLNYgMbPpZrbOzGrN7PYO2p1rZq1mdlWc9YhIPGILEjMrBe4geefwRGC2mU08QbvvAY/HVYuIxCvOPZIpQK27r3f3JmABMDNNuy8BvwV2xliLiMQoziAZAWxJma6L5r3FzEaQHKF+box1iEjM4gwSSzPP203/CLjN3Vs7XJHZHDNbbmbLd+3ala/6RCRPMh0hLRd1wKiU6ZHAtnZtaoAFyYHqqQIuMbMWd/99aiN3nwfMA6ipqWkfRiJSYHEGyTJgfPRoz63ALOCa1Abu/tZjP83sF8Aj7UNERLq/2ILE3VvM7FaS38aUAvPdfY2Z3RIt13kRkXeIOPdIcPdFwKJ289IGiLtfH2ctIhIfXdkqIsEUJCISTEEiIsEUJCISTEEiIsEUJCISTEEiIsEUJCISTEEiIsEUJCISTEEiIsEUJCISTEEiIsEUJCISTEEiIsEUJCISTEEiIsEUJCISTEEiIsEUJCISLNbBn0UkC+6w8Tl4cyO0NkHFQDjlQujVv9CVdUpBIlJoDfth5T2wfD7sXX/ssh4VMOkTMPUWGHpGYerLgIJEpJD2boD7r4I9temXNx+GVffBSwvg0h/Ae6/v0vIypXMkIoVy8B9w98dPHCKp2lpg4Vdg9YPx15UDBYlIoTx2G+zfnF2fhV+B+l3x1BNAQSJSCAd3wGuPZN+vtRFW3ZP/egIpSEQKYcXd0NacW9/ld0Fba37rCaQgESmEzX/Nve/+LbC/Ln+15IGCRKQQGusD+x/MTx15oiARKYRERWD/3vmpI08UJCKFMOys3PtWVEHfEfmrJQ8UJCKF8N4bAMut79mfhrJEXssJpSARKYRB74J3XZh9PyuBmhvzX08gBYlIoUz/P9Czf3Z9pn0dBoyJpZwQChKRQqmeAJ/+LVQMyqz9B/47XPC1WEvKlYJEpJBG1sDNT0PN5yDRJ32bMefDrAfgo//atbVlQXf/ihTagDFw2Q+TQbHmd2+PR9JrAEy4FAafVugKO6UgEekuyvvAOdcVuoqc6NBGRIIpSEQkmIJERIIpSEQkmIJERIIpSEQkmIJERIIpSEQkmIJERIIpSEQkmIJERIIpSEQkmIJEpJuZNm0a06ZNK3QZWVGQiEgwBYmIBIs1SMxsupmtM7NaM7s9zfJrzezl6PVXMwsYo19ECiW2IDGzUuAOYAYwEZhtZhPbNdsAXODuZwLfAebFVY+IxCfOPZIpQK27r3f3JmABMDO1gbv/1d3fjCaXACNjrEdEYhJnkIwAtqRM10XzTuRzwB9jrEdEYhLnmK3pHiPmaRuaXUgySM4/wfI5wByA0aNH56s+EcmTOPdI6oBRKdMjgW3tG5nZmcDPgZnuvifditx9nrvXuHtNdXV1LMWKSO7iDJJlwHgzG2dmCWAW8HBqAzMbDTwEfMbdX4+xFhGJUWyHNu7eYma3Ao8DpcB8d19jZrdEy+cC3wQGAT8zM4AWd6+JqyYRiUesz7Vx90XAonbz5qa8vwm4Kc4aRCR+urJVRIIpSEQkmIJERIIpSEQkmIJERIIpSEQkmIJERIIpSEQkmIJERILFemWrSLFbuHBhl3/mnj17CvbZl19+eU79tEciIsEUJCISTEEiIsEUJCISTEEiIsEUJCISTEEiIsEUJCISTEEiIsEUJCISTJfIi+TRtkNwoDn5vl8ChlUUtp6uoiARCdTQAi/ugud2GNsPH/uAyZG9nfOHOudWQ6K0QAV2AQWJSIBth+DOvxn7mtI9oRbqDhkL/m48udX5wkRncK8uLrCL6ByJSI7+cRh+/OqJQyTV7gbjR68Yexq6oLACUJCI5Gj+OuNwS+chctTBZuPu1ztuv691X/Ip2aNhW8s22rwtrMguokMbkRy8sR+2Hc48RI7acNDYXO+Mrnx7Xpu3sbZ5LUsbllLbUpt8Sjbw0wM/pX9Jf6aUT6GmvIbKksr0K+0GFCQiOXh2e/Yhktr32vEOwOG2w9xXfx8bWzambbuvbR9/OvInFh9ZzOzK2ZyaODXnz42TDm1EcvDavtz7ro36Nnoj8w/OP2GIpGqkkXvr76W2uTb3D46RgkQkS20ODa2575Ecbkn++cfDf2Rb67aM+7XSygP1D9DojTl/dlwUJCJZKjEoM8+5f6IEjrQdYVXjqqz7NngDKxtX5vzZcVGQiORgSMAVq4MrYGXTSpppzqn/0saluX94TBQkIjl4/5Dc90g+MMR5o/mNnPvvbN2Z/Jq4G1GQiORgSjX0LM0+TCrLnLOrkoc2IRq8e13ZpiARyUHPMrhsTPZBMnOs06MEyizsyovQ/vmmIBHJ0QXDYMaozK48NZwrxrZx3pDkdHVpdc6fmyBB35K+OfePg4JEJMAlo+HGCW2M7H3ivZMxlc7NpzkfHvH2vCnlU3L+zMnlk0lYIuf+cehe+0ciRejsKji7ytlwwFmx2zjQlJzfLwHnDj72cvijhpcNZ1TpKLa0bsn6884rPy+w4vxTkIjkybi+MK5v5udNZlTMYP7B+bTQknGfmvIahpYNzaW8WOnQRqRAxvYYy9WVV1OW4e/zSYlJzKyYGXNVuVGQiBTQ6YnTuanvTby77N0Y6S+771/Snxm9ZjC792xKrXsOs6ZDG5ECG102mhv73sju1t2saFzB3ra9tHorvawXExMTmdBjAiXWvX/nK0hEuomq0iourri40GXkpHvHnIgUBQWJiARTkIhIMAWJiARTkIhIMAWJiARTkIhIMAWJiARTkIhIMAWJiARTkIhIsFiDxMymm9k6M6s1s9vTLDcz+0m0/GUzOyfOekQkHrEFiZmVAncAM4CJwGwzm9iu2QxgfPSaA9wZVz0iEp8490imALXuvt7dm4AFQPtRWWYC93jSEqC/mQ2LsSYRiUGcQTICSB2Qsi6al20bEenm4hyPJN1wT+0HtMykDWY2h+ShD0C9ma0LrC3fqoDdhS6iSGhbZaY7bqcxJ1oQZ5DUAaNSpkcC7R+9nkkb3H0eMC/fBeaLmS1395pC11EMtK0yU2zbKc5Dm2XAeDMbZ2YJYBbwcLs2DwPXRd/enAfsd/ftMdYkIjGIbY/E3VvM7FbgcaAUmO/ua8zslmj5XGARcAlQCxwGboirHhGJj7nn/lR1STKzOdHhl3RC2yozxbadFCQiEkyXyItIMAVJhszsSjNzMzstmp5sZi+Y2Zro8v6rU9reGl3272ZWVbiqu16a7TTGzFaY2epoW92S0vak2k5mVp9m3hgzeyr6N/SMmY2M5l8YbbOjrwYzuyJadn9068mrZjbfzHp08Y9yPHfXK4MX8CvgWeBfoulTgfHR++HAdqB/NH02MBbYCFQVuvYCb6cEUB69r4y2yfCTcTsB9Wnm/Rr4bPT+IuDeNG0GAnuBimj6EpLXYBnwIPCFQv9s2iPJgJlVAh8APkfya2zc/XV3fyN6vw3YCVRH06vcfWNhqi2cE2ynJndvjJqUk7IXfLJup3YmAk9F75/m+NtIAK4C/ujuhwHcfZFHgBdJXn9VUAqSzFwBPOburwN729+lbGZTSP7m/XsBautOriDNdjKzUWb2MsnbIb4XBa8kvQR8Mnp/JdDHzAa1azOL5J7HMaJDms8Aj8VaYQYUJJmZTfKmQ6I/Zx9dEN1keC9wg7u3FaC27iTtdnL3Le5+JvBu4LNmNqRA9XVH/wxcYGargAuArUDL0YXRv68zSF6P1d7PgL+4+7NdUWhH9PVvJ6LfDnUkD12c5MV1TvK+gz7AM8C/u/uv0/TdCNS4e3e7ZyLvOtpOnvKPzMzuAh5199+kzNvISbCdzKze3Ss7WF4JrHX3kSnzvgKc7u5z2rX9FslzTJ/oDr/AtEfSuatIDnUwxt3HuvsoYAPwIeB30bLjQuQkdKLtdL6Z9QIwswEkz6F0t5suC8bMqszs6P/DrwPz2zWZTbvDGjO7CbgYmN0dQgQUJJmYTTIwUv0W+AXJMLk+5Su6yQBm9mUzqyN5EuxlM/t5F9ZbKCfaTvOApWb2ErAY+L/u/gqclNupwszqUl5fBaYB68zsdWAI8G9HG5vZWJI3tS5ut565UdsXon933+yS6jugQxsRCaY9EhEJpiARkWAKEhEJpiARkWAKEhEJpiCRbie6s/qSQtchmVOQSM6ih6DFYTLJO1wzZmZxDmQunVCQSFpmNtbM1prZ3dFYGb8xswoz22hm3zSz54BPmdlsM3slGhvjeyn9683se9FYJE+a2ZRovI31ZvbxqE1PM7sr6r8qGoMjAXwbuDq62OpqM+sdjbuxLGo3M+p/vZn92swWAn8qxHaSSKHHMdCre75IjhPiwAei6fkkbzDbCHwtmjcc2Exy+IQy4M/AFdEyB2ZE739H8j96D+AsYHU0/38Ad0XvT4vW1RO4HvhpSi3fBT4dve8PvA70jtrVAQMLvb1O9pf2SKQjW9z9+ej9fcD50ftfRn+eCzzj7rvcvQW4n+RtAwBNvH17+yvAYndvjt6PjeafT/LOadx9LbCJ5IBR7X0MuN3MVpO8SbInMDpa9oS77839R5R80HGldKT9/RNHpw9Ff6Z7UuJRzR7tQgBtQCOAu7elnM/oqH8qAz7p7sfc7GdmU1NqkQLSHol0ZLSZvS96Pxt4rt3ypSTH0qiKTrzO5vgbzDryF+BaADM7leRexjrgIMkhGo56HPiSmVnU9uxsfxCJl4JEOvIayYGIXiY5buidqQs9+VTEr5McIvAlYKW7/yGL9f8MKDWzV0geLl3vyWEZnwYmHj3ZCnyH5PmVl83s1WhauhHd/StpRbewP+Lukwpdi3R/2iMRkWDaIxGRYNojEZFgChIRCaYgEZFgChIRCaYgEZFgChIRCfb/AY4iIUpNnQdNAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"data_df = pd.read_csv(\"./_results_plot_wee1.csv\")\n",
"display(data_df)\n",
"display(data_df.groupby(\"promoter\", sort=False).mean())\n",
"\n",
"fig, ax = plt.subplots(1, 1, figsize=(4, 6))\n",
"x = np.array([\"A21\", \"A31\", \"L972\"])\n",
"x_pos = np.arange(len(x))\n",
"y = data_df.groupby(\"promoter\", sort=False).mean()[\"rel-value\"]\n",
"e = data_df.groupby(\"promoter\", sort=False).sem()[\"rel-value\"]\n",
"\n",
"sns.swarmplot(x=\"promoter\", y=\"rel-value\", data=data_df, hue=\"exp\", s=16, ax=ax)\n",
"ax.bar(x_pos, y, yerr=e, tick_label=x, color=\"black\", alpha=0.3)\n",
"plt.legend([], [], frameon=False)\n",
"fig.savefig(\"./__results_wee1.png\")\n",
"fig.savefig(\"./__results_wee1.pdf\")\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "5d8492ee-fbf9-47df-ae0c-935587c635d3",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" rel-value | \n",
" exp | \n",
"
\n",
" \n",
" promoter | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" L972 | \n",
" 0.671065 | \n",
" 2.0 | \n",
"
\n",
" \n",
" T21 | \n",
" 1.000000 | \n",
" 2.0 | \n",
"
\n",
" \n",
" T31 | \n",
" 0.470516 | \n",
" 2.0 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" rel-value exp\n",
"promoter \n",
"L972 0.671065 2.0\n",
"T21 1.000000 2.0\n",
"T31 0.470516 2.0"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data_df.groupby(\"promoter\").mean()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a76cc2e1-a2e6-45b1-8164-9577690938f8",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}