{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", "import seaborn as sns\n", "from matplotlib import pyplot as plt" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
LabelAreaMeanSlicestrainconditiontimechromophorenumberratio
1640:1052-0863:SK482-dose-0-PCB-1_w4CSU-64098751.5981SK482dose0PCB10.021445
2640:0751-0491:SK482-dose-0-PCB-1_w4CSU-64097543.4591SK482dose0PCB10.015242
3640:0534-0302:SK482-dose-0-PCB-1_w4CSU-64087251.3381SK482dose0PCB10.021573
4640:0455-0528:SK482-dose-0-PCB-1_w4CSU-64065680.6361SK482dose0PCB10.024155
5640:0239-0895:SK482-dose-0-PCB-1_w4CSU-64053034.9081SK482dose0PCB10.018356
.................................
28185640:0783-0290:SK483-time-5-PCB-1_w4CSU-6401587637.14760SK483time5PCB10.500248
28186640:0139-0886:SK483-time-5-PCB-1_w4CSU-640971611.52560SK483time5PCB10.653037
28187640:0280-0632:SK483-time-5-PCB-1_w4CSU-640409670.66060SK483time5PCB10.870531
28188640:0904-1039:SK483-time-5-PCB-1_w4CSU-6401114387.45260SK483time5PCB10.200544
28189640:0387-0003:SK483-time-5-PCB-1_w4CSU-64095556.77960SK483time5PCB10.461694
\n", "

28189 rows × 10 columns

\n", "
" ], "text/plain": [ " Label Area Mean Slice \\\n", " \n", "1 640:1052-0863:SK482-dose-0-PCB-1_w4CSU-640 987 51.598 1 \n", "2 640:0751-0491:SK482-dose-0-PCB-1_w4CSU-640 975 43.459 1 \n", "3 640:0534-0302:SK482-dose-0-PCB-1_w4CSU-640 872 51.338 1 \n", "4 640:0455-0528:SK482-dose-0-PCB-1_w4CSU-640 656 80.636 1 \n", "5 640:0239-0895:SK482-dose-0-PCB-1_w4CSU-640 530 34.908 1 \n", "... ... ... ... ... \n", "28185 640:0783-0290:SK483-time-5-PCB-1_w4CSU-640 1587 637.147 60 \n", "28186 640:0139-0886:SK483-time-5-PCB-1_w4CSU-640 971 611.525 60 \n", "28187 640:0280-0632:SK483-time-5-PCB-1_w4CSU-640 409 670.660 60 \n", "28188 640:0904-1039:SK483-time-5-PCB-1_w4CSU-640 1114 387.452 60 \n", "28189 640:0387-0003:SK483-time-5-PCB-1_w4CSU-640 95 556.779 60 \n", "\n", " strain condition time chromophore number ratio \n", " \n", "1 SK482 dose 0 PCB 1 0.021445 \n", "2 SK482 dose 0 PCB 1 0.015242 \n", "3 SK482 dose 0 PCB 1 0.021573 \n", "4 SK482 dose 0 PCB 1 0.024155 \n", "5 SK482 dose 0 PCB 1 0.018356 \n", "... ... ... ... ... ... ... \n", "28185 SK483 time 5 PCB 1 0.500248 \n", "28186 SK483 time 5 PCB 1 0.653037 \n", "28187 SK483 time 5 PCB 1 0.870531 \n", "28188 SK483 time 5 PCB 1 0.200544 \n", "28189 SK483 time 5 PCB 1 0.461694 \n", "\n", "[28189 rows x 10 columns]" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mNG = pd.read_csv(\"quantification/488.csv\", index_col=0)\n", "iRFP = pd.read_csv(\"quantification/640.csv\", index_col=0)\n", "iRFP_label = iRFP[\"Label\"].values\n", "strain = []\n", "condition = []\n", "time = []\n", "chromophore = []\n", "number = []\n", "for i in iRFP_label:\n", " strain.append(i[14:19])\n", " condition.append(i[20:24])\n", " time.append(i[25:27])\n", " chromophore.append(i[-15:-12])\n", " number.append(i[-11:-10])\n", "\n", "iRFP[\"strain\"] = strain\n", "iRFP[\"condition\"] = condition\n", "iRFP[\"time\"] = time\n", "iRFP[\"chromophore\"] = chromophore\n", "iRFP[\"number\"] = number\n", "\n", "iRFP.loc[(iRFP['condition'] == \"dose\")& (iRFP[\"time\"] == \"0-\"),'time'] = 0\n", "iRFP.loc[(iRFP['condition'] == \"dose\")& (iRFP[\"time\"] == \"1-\"),'time'] = 0.008\n", "iRFP.loc[(iRFP['condition'] == \"dose\")& (iRFP[\"time\"] == \"2-\"),'time'] = 0.04\n", "iRFP.loc[(iRFP['condition'] == \"dose\")& (iRFP[\"time\"] == \"3-\"),'time'] = 0.2\n", "iRFP.loc[(iRFP['condition'] == \"dose\")& (iRFP[\"time\"] == \"4-\"),'time'] = 1\n", "iRFP.loc[(iRFP['condition'] == \"dose\")& (iRFP[\"time\"] == \"5-\"),'time'] = 5\n", "iRFP.loc[(iRFP['condition'] == \"dose\")& (iRFP[\"time\"] == \"6-\"),'time'] = 25\n", "iRFP.loc[(iRFP['condition'] == \"dose\")& (iRFP[\"time\"] == \"7-\"),'time'] = 125\n", "iRFP.loc[(iRFP['condition'] == \"dose\")& (iRFP[\"time\"] == \"8-\"),'time'] = 625\n", "\n", "iRFP.loc[(iRFP['condition'] == \"time\")& (iRFP[\"time\"] == \"0-\"),'time'] = 0\n", "iRFP.loc[(iRFP['condition'] == \"time\")& (iRFP[\"time\"] == \"0.\"),'time'] = 0.5\n", "iRFP.loc[(iRFP['condition'] == \"time\")& (iRFP[\"time\"] == \"1-\"),'time'] = 1\n", "iRFP.loc[(iRFP['condition'] == \"time\")& (iRFP[\"time\"] == \"2-\"),'time'] = 2\n", "iRFP.loc[(iRFP['condition'] == \"time\")& (iRFP[\"time\"] == \"3-\"),'time'] = 3\n", "iRFP.loc[(iRFP['condition'] == \"time\")& (iRFP[\"time\"] == \"5-\"),'time'] = 5\n", "\n", "\n", "iRFP[\"ratio\"] = iRFP[\"Mean\"]/mNG[\"Mean\"]\n", "\n", "iRFP.loc[(iRFP['condition'] == \"time\")& (iRFP[\"chromophore\"] == \"e-0\"),'chromophore'] = \"PCB\"\n", "\n", "\n", "iRFP" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.015670479275462595\n", "0.021223387902042527\n", "0.01649897610634263\n", "0.021790434118387093\n", "0.017767741853677917\n", "0.02454092938029461\n", "0.02764040270678133\n", "0.03845944921989301\n", "0.08858781651188491\n", "0.12910346776516368\n", "0.2086677305289825\n", "0.32763402352807014\n", "0.3382892070681316\n", "0.41933785687827924\n", "0.01713927044801225\n", "0.02331429729927225\n", "0.01758253149021683\n", "0.0236167548814895\n", "0.018269425245296855\n", "0.024900081474747933\n", "0.018468929910462388\n", "0.02413803898982532\n", "0.021383822659181907\n", "0.028632717009483603\n", "0.02687562564787836\n", "0.037060013755873644\n", "0.02812243729272476\n", "0.03748332439872454\n", "0.014043257904369694\n", "0.01913919231581349\n", "0.014709614008859687\n", "0.01872587413622786\n", "0.0154384833042708\n", "0.022133241888695726\n", "0.019745262152399322\n", "0.026755961039713123\n", "0.0537875179125073\n", "0.08904841764117027\n", "0.1847659600945831\n", "0.2903013009798639\n", "0.313697785139928\n", "0.41914453953624464\n", "0.01621897730354076\n", "0.02262355438615627\n", "0.016079213335297594\n", "0.022940220186905846\n", "0.016707469911996977\n", "0.025560522712332424\n", "0.016937693192471754\n", "0.022604406966884573\n", "0.01736163913886768\n", "0.03336123329712275\n", "0.022634355204192214\n", "0.04012080200342156\n", "0.025343085113692897\n", "0.03557741686669586\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
LabelAreaMeanSlicestrainconditiontimechromophorenumberratio
1604640:0784-0411:SK482-dose-1-PCB-1_w4CSU-640108954.3923SK482dose0.008PCB10.015402
1605640:0945-0980:SK482-dose-1-PCB-1_w4CSU-64097536.9253SK482dose0.008PCB10.017851
1606640:0215-1027:SK482-dose-1-PCB-1_w4CSU-640114043.4373SK482dose0.008PCB10.020107
1607640:0630-0446:SK482-dose-1-PCB-1_w4CSU-64062837.8203SK482dose0.008PCB10.013626
1608640:1098-0599:SK482-dose-1-PCB-1_w4CSU-64079334.7633SK482dose0.008PCB10.011467
.................................
21740640:1138-0534:SK483-dose-7-BV-1_w4CSU-64083841.84845SK483dose125-BV10.028133
21741640:0868-0264:SK483-dose-7-BV-1_w4CSU-64075560.08945SK483dose125-BV10.029899
21742640:0136-0857:SK483-dose-7-BV-1_w4CSU-64097552.92545SK483dose125-BV10.032449
21743640:0418-0165:SK483-dose-7-BV-1_w4CSU-6406839.39745SK483dose125-BV10.028779
21744640:1145-1073:SK483-dose-7-BV-1_w4CSU-64030726.70745SK483dose125-BV10.022829
\n", "

14525 rows × 10 columns

\n", "
" ], "text/plain": [ " Label Area Mean Slice strain \\\n", " \n", "1604 640:0784-0411:SK482-dose-1-PCB-1_w4CSU-640 1089 54.392 3 SK482 \n", "1605 640:0945-0980:SK482-dose-1-PCB-1_w4CSU-640 975 36.925 3 SK482 \n", "1606 640:0215-1027:SK482-dose-1-PCB-1_w4CSU-640 1140 43.437 3 SK482 \n", "1607 640:0630-0446:SK482-dose-1-PCB-1_w4CSU-640 628 37.820 3 SK482 \n", "1608 640:1098-0599:SK482-dose-1-PCB-1_w4CSU-640 793 34.763 3 SK482 \n", "... ... ... ... ... ... \n", "21740 640:1138-0534:SK483-dose-7-BV-1_w4CSU-640 838 41.848 45 SK483 \n", "21741 640:0868-0264:SK483-dose-7-BV-1_w4CSU-640 755 60.089 45 SK483 \n", "21742 640:0136-0857:SK483-dose-7-BV-1_w4CSU-640 975 52.925 45 SK483 \n", "21743 640:0418-0165:SK483-dose-7-BV-1_w4CSU-640 68 39.397 45 SK483 \n", "21744 640:1145-1073:SK483-dose-7-BV-1_w4CSU-640 307 26.707 45 SK483 \n", "\n", " condition time chromophore number ratio \n", " \n", "1604 dose 0.008 PCB 1 0.015402 \n", "1605 dose 0.008 PCB 1 0.017851 \n", "1606 dose 0.008 PCB 1 0.020107 \n", "1607 dose 0.008 PCB 1 0.013626 \n", "1608 dose 0.008 PCB 1 0.011467 \n", "... ... ... ... ... ... \n", "21740 dose 125 -BV 1 0.028133 \n", "21741 dose 125 -BV 1 0.029899 \n", "21742 dose 125 -BV 1 0.032449 \n", "21743 dose 125 -BV 1 0.028779 \n", "21744 dose 125 -BV 1 0.022829 \n", "\n", "[14525 rows x 10 columns]" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAD4CAYAAAD4k815AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAARmElEQVR4nO3df4xc1XnG8edpnIg2EMXUC7YodF2XYkgJDt3QNKAIQhLAWAJkykIRoS1gbAEKkhOxitrUUlzJkmtS1eJHHEC4Ek2oZEgQhhBku8UoQLOgDTF1KARcusTgpaCapHUbw9s/ZsYez97ZuXPnzs7s8fcjrXbmzrnnvodZnkxm3jk4IgQASMev9boAAEC5CHYASAzBDgCJIdgBIDEEOwAkZtZ0XmzOnDkxODg4nZcEgBnv2WeffSsiBvKOn9ZgHxwc1Ojo6HReEgBmPNv/3s543ooBgMQQ7ACQGIIdABJDsANAYgh2AEgMwQ4AiSHYASAxBDsAJIZgB4DEEOwAkBiCHQASQ7ADQGIIdgBIDMEOAIkh2AEgMQQ7ACSGYAeAxBDsAJAYgh0AEkOwA0BiCHYASEzLYLd9vO1ttnfafsH2l6rHV9l+3fZY9Wdx98sFALQyK8eY/ZJWRsRzto+S9Kztx6uPfSMi/qZ75QEA2tUy2CNit6Td1dvv2t4p6bhuFwYAKKat99htD0r6hKRnqodutP287Xtsz25yzjLbo7ZHJyYmOioWANBa7mC3faSkTZJujoi9ku6QtEDSIlVe0a/LOi8iNkTEUEQMDQwMlFAyAGAquYLd9gdVCfX7IuIBSYqINyPivYh4X9K3JJ3RvTIBAHnl6YqxpLsl7YyIW+uOz6sbdomkHeWXBwBoV56umDMlXSXpJ7bHqse+KukK24skhaRdkq7vSoUAgLbk6Yp5UpIzHnqk/HIAAJ3im6cAkBiCHQASM+ODfd3wkl6XAAB9ZcYHOwDgUAQ7ACSGYAeAxBDsAJAYgh0AEkOwA0BiCHYASAzBDgCJIdgBIDEEOwAkhmAHgMQQ7ACQGIIdABJDsANAYgh2AEgMwQ4AiSHYASAxBDsAJIZgB4DEEOwAkBiCHQASQ7ADQGIIdgBIDMEOAIkh2AEgMQQ7ACSmZbDbPt72Nts7bb9g+0vV40fbftz2S9Xfs7tfLgCglTyv2PdLWhkRJ0v6lKQbbJ8iaUTSlog4UdKW6n0AQI+1DPaI2B0Rz1Vvvytpp6TjJF0kaWN12EZJF3erSABAfm29x257UNInJD0j6diI2C1Vwl/SMU3OWWZ71PboxMREZ9VOYXxke9fmBoCZJHew2z5S0iZJN0fE3rznRcSGiBiKiKGBgYEiNQIA2pAr2G1/UJVQvy8iHqgeftP2vOrj8yTt6U6JAIB25OmKsaS7Je2MiFvrHnpI0tXV21dL+l755QEA2jUrx5gzJV0l6Se2x6rHvippjaR/tH2NpNck/XF3SgQAtKNlsEfEk5Lc5OFzyy0HANApvnkKAIkh2AEgMQQ7ACSGYAeAxBDsAJAYgh0AEkOwA0BiCHYASAzBDgCJIdgBIDEEOwAkhmAHgMQQ7ACQGIIdABJDsANAYgh2AEgMwQ4AiSHYASAxBDsAJIZgB4DEEOwAkBiCHQASQ7ADQGIIdgBIDMEOAIlJItjHR7Zn3gaAw1ESwQ4AOIhgB4DEEOwAkBiCHQAS0zLYbd9je4/tHXXHVtl+3fZY9Wdxd8sEAOSV5xX7vZLOzzj+jYhYVP15pNyyAABFtQz2iHhC0tvTUAsAoASdvMd+o+3nq2/VzG42yPYy26O2RycmJjq43GTrhpeUOh8ApKBosN8haYGkRZJ2S1rXbGBEbIiIoYgYGhgYKHg5AEBehYI9It6MiPci4n1J35J0RrllAQCKKhTstufV3b1E0o5mYwEA02tWqwG2vy3pbElzbI9L+itJZ9teJCkk7ZJ0fRdrBAC0oWWwR8QVGYfv7kItAIAS8M1TAEgMwQ4AiSHYASAxBDsAJIZgB4DEEOwAkBiCHQASQ7ADQGIIdgBITFLBPj6yvdT5tmxdUOp8ADAdkgp2AADBDgDJIdgBIDEEOwAkhmAHgMQQ7ACQGIIdABJDsAM9NDiyudclIEEEOwAkhmAHgMQQ7ACQGIIdABJDsANAYgh2AEjMjA32dcNLel1C19y2fGuvS+h7zZ7/bv9dlNGeSIsjum3GBjsAIBvBDgCJIdgBIDEEOwAkpmWw277H9h7bO+qOHW37cdsvVX/P7m6ZAIC88rxiv1fS+Q3HRiRtiYgTJW2p3gcA9IGWwR4RT0h6u+HwRZI2Vm9vlHRxyXUBAAoq+h77sRGxW5Kqv49pNtD2MtujtkcnJiYKXq494yPbderGUzU+sr2t87ZsXdClig4/c7eN5R6b1XverB+9nXk7uX630cuObur6h6cRsSEihiJiaGBgoNuXA4DDXtFgf9P2PEmq/t5TXkkAgE4UDfaHJF1dvX21pO+VUw4AoFN52h2/LekpSSfZHrd9jaQ1kj5v+yVJn6/eBwD0gVmtBkTEFU0eOrfkWgAAJeCbpwCQGIIdABJDsPdQv+673tgr3o3e8Xbl6TVvpx++E3l70OvHDY5spncd04ZgB4DEEOwAkBiCHQASQ7ADQGIIdgBIDMEOAImZ8cE+PP+Wjudod7veIm2Kty3f2vK8XrY/FmlprD+naFth7bzaXOuGl5TeXlm0VbJdWS2NnbY45jm/ne2pW81HS2YaZnywAwAORbADQGIIdgBIDMEOAIkh2AEgMQQ7ACSGYAeAxMzoYJ+qh/3Rnbd3NHdjb3vZve55etZ7va1vs+1763u+524b69o2v+uGl2T2l3c6f23e2tzr56+QlN3DvW54Sebxqfq9i27r22qOdnrMOz2/1Xj63fvbjA52AMBkBDsAJIZgB4DEEOwAkBiCHQASQ7ADQGIIdgBIzGET7K32rK7vU2/Wsz5VL3u7fe718uzV3kqznu921PekN+sVn7ttTGuXry58rSI96GXslV5/3fXzVxzoXa9Zu3z1pGsOjmyeNK7e4MjmprU1Oz5Vf/lUvey1v99mf8et+tbL6DvPuja97v3psAl2ADhcEOwAkBiCHQASM6uTk23vkvSupPck7Y+IoTKKAgAU11GwV50TEW+VMA8AoAS8FQMAien0FXtI+oHtkPTNiNjQOMD2MknLJOmEE07o8HIV7bS/rVq1Spvmb9Kjul1bti7QuZ/9WSk1ZGmcv0gLY+2cxt833PnZtuepnTN325jeOGfRgcfq7x/4Z9nQ7teosU2xsT0wy7rhJVq7fLXeOGdR5jVX3v/wpHka76+fv0I3vXrHlPNL0hvnLNLa5av1lTv/YtJ8Rzz2eub56+ev0Mrq7dqY8ZHtGjrvKH0l41or7384c55WbX2dtv21ajN8Uh855NiuNRcWqqfVea3m27XmQloc+0Snr9jPjIjTJV0g6Qbbn2kcEBEbImIoIoYGBgY6vBwAoJWOgj0ifl79vUfSg5LOKKMoAEBxhYPd9odtH1W7LekLknaUVRgAoJhO3mM/VtKDtmvz/ENEfL+UqgAAhRUO9oh4RdJpJdYCACgB7Y4AkBiCHQASM2ODfXj+LbnHLn11qe46YkvmY43b7ea5v/Cy6w7cb+xVr92vHzOVTrfrranv/87aGrfWO97utrl5x69dvlpzt40d8h2DWk3NtgKuH3vEY69nnlu7ndXvnnfNtfkb68tylvZmHm/295ann78d4yPbW24x3Y7Bkc2FesvrtxJudn6ROulznx4zNtgBANkIdgBIDMEOAIkh2AEgMQQ7ACSGYAeAxBDsAJCYZIK9vk+9djurd/3UjadKknYuPHlSj3q7mp0/VW96kWt+ffjozHlr9+t7s2vHaudMpbafedm92FKlb7zZPuh5rpl1bt6e+lrvdeM1jnjs9UnH2umrbmfs+vkrco+td5b2Tuqlb9Zb30w39n/vdL76mrLqm+pYYz151tc45nDrn08m2AEAFQQ7ACSGYAeAxBDsAJAYgh0AEkOwA0BiZlywT7XtalbLY73tT1ylpa8u1c6FJ+uoizdMevxKb8qcN6tFsb71rrENsbZl78LLrjvkp1H9scb2xH3v3Kp979x6yPVqY+ZuG9Nty7dq3zu3au62sQMtfGuXr550Tu2fV21b3az6y9RO62Tj2PXzVxzS5pjVrljfRpl1v77NMKtlslkLZqPGdsVmLYd55+tU7fpnaW/XWvdq8zZba+3a7bRD1tdaf17WHLU21WbzT9UyWb+9cJF2yNTMuGAHAEyNYAeAxBDsAJAYgh0AEkOwA0BiCHYASAzBDgCJmdXrAtoxOLJZNzUcu+uILbp237mH3G/l/suHde0+6aQf3Kuh847S6GPv6sUv/KmkyrHa7TwWXnadxr55sqRqH/ywJFX64e+LpZPGX+lNekMHe9iz+tcladH1O3WlN+kv73/7kMdr/ecLL7sus+++sfc7qxd833nHZT6WpX58q+O1nu68x6e6ZrvK7Cefrt70srS7rW8RWX3fjddt1hueVd9Z2itNNb6hJ31XxjXWDS/Ryvsfbtoff+DcNRdmXmdwZLOe1Ecm1bdrzYVTntu4ztqYwZHNTW9PVUc38IodABJDsANAYgh2AEgMwQ4Aieko2G2fb/tF2y/bHimrKABAcYWD3fYHJN0m6QJJp0i6wvYpZRUGACimk1fsZ0h6OSJeiYj/k/QdSReVUxYAoChHRLET7UslnR8R11bvXyXpDyPixoZxyyQtq949SdKLbVxmjqS3ChXYv1Jck5TmulJck5TmulJck3RwXb8dEQN5T+rkC0rOODbpfyUiYoOkyf9VizwXsEcjYqjIuf0qxTVJaa4rxTVJaa4rxTVJxdfVyVsx45KOr7v/W5J+3sF8AIASdBLsP5J0ou35tj8k6XJJD5VTFgCgqMJvxUTEfts3SnpM0gck3RMRL5RWWUWht3D6XIprktJcV4prktJcV4prkoq+jV30w1MAQH/im6cAkBiCHQAS0/Ngb7UtgSv+rvr487ZP70Wd7cqxroW2n7L9v7a/3Isa25VjTVdWn6Pnbf/Q9mm9qLNdOdZ1UXVNY7ZHbZ/VizrbkXe7D9uftP1e9XspfS/Hc3W27f+qPldjtr/Wizrbkee5qq5rzPYLtv+55aQR0bMfVT50/Zmk35H0IUk/lnRKw5jFkh5VpW/+U5Ke6WXNJa7rGEmflPTXkr7c65pLWtOnJc2u3r4goefqSB38POrjkn7a67o7XVPduK2SHpF0aa/rLum5OlvSw72uteQ1fVTSv0o6oXr/mFbz9voVe55tCS6S9PdR8bSkj9qeN92FtqnluiJiT0T8SNKvelFgAXnW9MOIeKd692lVvtvQ7/Ks6xdR/TdK0oeV8UW8PpN3u4+bVPnPfe2ZzuI6kOI2JnnW9CeSHoiI16RKdrSatNfBfpyk/6i7P1491u6YfjMTa26l3TVdo8r/0+p3udZl+xLbP5W0WdKfT1NtRbVck+3jJF0i6c5prKtTef8G/8j2j20/avtj01NaYXnW9HuSZtv+J9vP2v5iq0l7/d88zbMtQa6tC/rMTKy5ldxrsn2OKsHe9+9FK//WGA9KetD2ZyR9XdLnul1YB/Ks6W8l3RIR79lZw/tSnnU9p8q+Kr+wvVjSdyWd2PXKisuzplmS/kDSuZJ+XdJTtp+OiH9rNmmvgz3PtgQzceuCmVhzK7nWZPvjku6SdEFE/Oc01daJtp6riHjC9gLbcyKiXzedyrOmIUnfqYb6HEmLbe+PiO9OT4mFtFxXROytu/2I7dsTeK7GJb0VEb+U9EvbT0g6TVLTYO/1BwezJL0iab4OfnDwsYYxF+rQD0//pdcfeJSxrrqxqzQzPjzN81ydIOllSZ/udb0lr+t3dfDD09MlvV67348/7fz9Vcffq5nx4Wme52pu3XN1hqTXZvpzJelkSVuqY39D0g5Jvz/VvD19xR5NtiWwvbz6+J2qfGK/WJXA+G9Jf9arevPKsy7bcyWNSvqIpPdt36zKp+F7m07cQzmfq69J+k1Jt1dfCe6PPt9xL+e6lkr6ou1fSfofScNR/TeuH+Vc04yTc12XSlphe78qz9XlM/25ioidtr8v6XlJ70u6KyJ2TDUvWwoAQGJ63RUDACgZwQ4AiSHYASAxBDsAJIZgB4DEEOwAkBiCHQAS8//dKQtbLH5EHwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "#dose-response\n", "df = pd.DataFrame()\n", "\n", "for i in (iRFP[\"strain\"]==\"SK482\",iRFP[\"strain\"]==\"SK483\"):\n", " for j in (iRFP[\"chromophore\"]==\"PCB\",iRFP[\"chromophore\"]==\"-BV\"):\n", " for k in (0.008,0.04,0.2,1,5,25,125):\n", " data_tmp = iRFP[(i)&(iRFP[\"condition\"]==\"dose\")&(j)&(iRFP[\"time\"]==k)]\n", " data_IQR = iRFP.loc[(i)&(iRFP[\"condition\"]==\"dose\")&(j)&(iRFP[\"time\"]==k),\"ratio\"].values\n", " Q1 = np.quantile(data_IQR,0.25)\n", " print(Q1)\n", " Q3 = np.quantile(data_IQR,0.75)\n", " print(Q3)\n", " IQR = (np.quantile(data_IQR,0.75)-np.quantile(data_IQR,0.25))*1.5\n", " IQR_low = Q1-IQR\n", " IQR_high = Q3+IQR\n", " data_tmp = data_tmp[(data_tmp[\"ratio\"]>IQR_low)&(data_tmp[\"ratio\"]\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
LabelAreaMeanSlicestrainconditiontimechromophorenumberratio
9664640:0514-0674:SK482-time-0-1_w4CSU-64097254.35120SK482time0PCB10.018840
9665640:0220-0182:SK482-time-0-1_w4CSU-64095950.77220SK482time0PCB10.017002
9666640:0136-1094:SK482-time-0-1_w4CSU-64078135.44720SK482time0PCB10.018892
9667640:0282-1037:SK482-time-0-1_w4CSU-64088949.62020SK482time0PCB10.020212
9668640:0869-0931:SK482-time-0-1_w4CSU-64075641.34120SK482time0PCB10.009347
.................................
27903640:0769-0722:SK483-time-5-BV-1_w4CSU-64047048.62159SK483time5-BV10.054253
27904640:0935-0991:SK483-time-5-BV-1_w4CSU-6407427.75759SK483time5-BV10.042801
27905640:0736-0772:SK483-time-5-BV-1_w4CSU-64016950.45659SK483time5-BV10.033664
27906640:0307-0085:SK483-time-5-BV-1_w4CSU-64073446.71159SK483time5-BV10.037414
27907640:0933-0614:SK483-time-5-BV-1_w4CSU-6406134.80359SK483time5-BV10.025519
\n", "

9854 rows × 10 columns

\n", "" ], "text/plain": [ " Label Area Mean Slice strain \\\n", " \n", "9664 640:0514-0674:SK482-time-0-1_w4CSU-640 972 54.351 20 SK482 \n", "9665 640:0220-0182:SK482-time-0-1_w4CSU-640 959 50.772 20 SK482 \n", "9666 640:0136-1094:SK482-time-0-1_w4CSU-640 781 35.447 20 SK482 \n", "9667 640:0282-1037:SK482-time-0-1_w4CSU-640 889 49.620 20 SK482 \n", "9668 640:0869-0931:SK482-time-0-1_w4CSU-640 756 41.341 20 SK482 \n", "... ... ... ... ... ... \n", "27903 640:0769-0722:SK483-time-5-BV-1_w4CSU-640 470 48.621 59 SK483 \n", "27904 640:0935-0991:SK483-time-5-BV-1_w4CSU-640 74 27.757 59 SK483 \n", "27905 640:0736-0772:SK483-time-5-BV-1_w4CSU-640 169 50.456 59 SK483 \n", "27906 640:0307-0085:SK483-time-5-BV-1_w4CSU-640 734 46.711 59 SK483 \n", "27907 640:0933-0614:SK483-time-5-BV-1_w4CSU-640 61 34.803 59 SK483 \n", "\n", " condition time chromophore number ratio \n", " \n", "9664 time 0 PCB 1 0.018840 \n", "9665 time 0 PCB 1 0.017002 \n", "9666 time 0 PCB 1 0.018892 \n", "9667 time 0 PCB 1 0.020212 \n", "9668 time 0 PCB 1 0.009347 \n", "... ... ... ... ... ... \n", "27903 time 5 -BV 1 0.054253 \n", "27904 time 5 -BV 1 0.042801 \n", "27905 time 5 -BV 1 0.033664 \n", "27906 time 5 -BV 1 0.037414 \n", "27907 time 5 -BV 1 0.025519 \n", "\n", "[9854 rows x 10 columns]" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAUnklEQVR4nO3df5BdZX3H8c+nJEyqZgg1K78xKUNJUAyl26ilMEGrTTIZgx2mm+iotXRiLHR0WmeytTO6M/1DO53QjpKSSSMDzlh+tApSCL8msU0YQd0wAYIrGinKGkoWoRDFjLP47R97znr3cs7ec++5u8t98n7N7Ow553nOOd9nN/PhcnPPN44IAQDS9RtzXQAAYGYR9ACQOIIeABJH0ANA4gh6AEjcvLkuoMjixYtjyZIlc10GAPSM/fv3PxcRfUVjr8mgX7JkiYaHh+e6DADoGbZ/VDbGWzcAkDiCHgASR9ADQOIIegBIHEEPAIkj6AEgcQQ9ACSOoAeAxBH0AJA4gh4AEkfQA0DiWva6sX29pHWSjkTEW7Njt0g6L5uySNL/RcSFBec+JemopFckjUdEf5fqBgBUVKWp2Q2SrpX05fxARAzk27a3SnpxmvMvi4jnOi0QAFBPy6CPiL22lxSN2bakP5X0ru6WBQDolrrv0V8i6dmI+EHJeEi6z/Z+25umu5DtTbaHbQ+PjY3VLAsAkKsb9Bsl3TTN+MURcZGkNZKusn1p2cSI2BER/RHR39dX2DsfANCBjoPe9jxJfyLplrI5EXE4+35E0m2SVnZ6PwBAZ+q8ov8jSd+LiNGiQduvt70w35b0XkkHa9wPANCBlkFv+yZJD0o6z/ao7SuzoQ1qetvG9um2d2W7p0h6wPYjkr4t6a6IuKd7pQMAqqjyqZuNJcf/rODYYUlrs+0nJa2oWR8AoCaejAWAxBH0AJA4gh4AEkfQA0DiCHoASBxBDwCJI+gBIHEEPQAkjqAHgMQR9ACQOIIeABJH0ANA4gh6AEgcQQ8AiSPoASBxBD0AJI6gB4DEEfQAkDiCHgASR9ADQOJaBr3t620fsX2w4diQ7Z/YPpB9rS05d7XtJ2wfsj3YzcIBANVUeUV/g6TVBcf/KSIuzL52NQ/aPkHSNklrJJ0vaaPt8+sUCwBoX8ugj4i9kp7v4NorJR2KiCcj4peSbpa0voPrAABqqPMe/dW2H83e2jm5YPwMSU837I9mxwrZ3mR72Pbw2NhYjbIAAI06DfrrJJ0j6UJJz0jaWjDHBcei7IIRsSMi+iOiv6+vr8OyAADNOgr6iHg2Il6JiF9J+ldNvE3TbFTSWQ37Z0o63Mn9AACd6yjobZ/WsPt+SQcLpn1H0rm2l9o+UdIGSXd0cj8AQOfmtZpg+yZJqyQttj0q6bOSVtm+UBNvxTwl6WPZ3NMl7YyItRExbvtqSfdKOkHS9RHx+IysAgBQyhGlb5vPmf7+/hgeHp7rMgCgZ9jeHxH9RWM8GQsAiSPoASBxBD0AJI6gB4DEEfQAkDiCHgASR9ADbdg6sK7w+LbNe2a5EqA6gh4AEkfQA0DiCHoASBxBDwCJI+gBIHEEPQAkjqAHgMQR9ACQOIIeABJH0ANA4gh6oElZm4N25hWNVb0u0G0EPQAkjqAHgMS1DHrb19s+Yvtgw7F/tP0924/avs32opJzn7L9mO0DtvnXvgFgDlR5RX+DpNVNx+6X9NaIeJuk70v622nOvywiLiz718kBADOrZdBHxF5Jzzcduy8ixrPdhySdOQO1AQC6oBvv0f+5pLtLxkLSfbb329403UVsb7I9bHt4bGysC2UBAKSaQW/77ySNS/pKyZSLI+IiSWskXWX70rJrRcSOiOiPiP6+vr46ZQEAGnQc9LY/ImmdpA9GRBTNiYjD2fcjkm6TtLLT+wEAOtNR0NteLWmLpPdFxMslc15ve2G+Lem9kg4WzQUAzJwqH6+8SdKDks6zPWr7SknXSloo6f7so5Pbs7mn296VnXqKpAdsPyLp25Luioh7ZmQVAIBS81pNiIiNBYe/VDL3sKS12faTklbUqg4AUBtPxiIZM9VLphu9b7ptZNnyWbsXeh9BDwCJI+gBIHEEPQAkjqAHgMQR9ACQOIIeABJH0ANA4gh6AEgcQQ8AiSPoASBxBD2QadXCoHG8bLt5/my2RQDKEPQAkDiCHgASR9ADQOIIegBIHEEPAIkj6AEgcQQ9ACSOoAeAxLUMetvX2z5i+2DDsd+yfb/tH2TfTy45d7XtJ2wfsj3YzcIBANVUeUV/g6TVTccGJe2OiHMl7c72p7B9gqRtktZIOl/SRtvn16oWANC2lkEfEXslPd90eL2kG7PtGyVdXnDqSkmHIuLJiPilpJuz8wAAs6jT9+hPiYhnJCn7/qaCOWdIerphfzQ7Vsj2JtvDtofHxsY6LAvHk3Z608yWsntu27yndD8/p3kO0C0z+ZexLjgWZZMjYkdE9EdEf19f3wyWBQDHl06D/lnbp0lS9v1IwZxRSWc17J8p6XCH9wMAdKjToL9D0key7Y9I+nrBnO9IOtf2UtsnStqQnQcAmEVVPl55k6QHJZ1ne9T2lZI+L+k9tn8g6T3ZvmyfbnuXJEXEuKSrJd0raUTSrRHx+MwsAwBQZl6rCRGxsWTo3QVzD0ta27C/S9KujqsDANTGk7EAkDiCHgASR9ADQOIIegBIHEEPAIlLOuiXDN411yWgosbWAe20LmieOzq4T6OD+6ZtJzCybHmle2wdWNe1NgrHXrim5b0av0sTdVY1F+0e0DuSDnoAAEEPAMkj6AEgcQQ9ACSOoAeAxBH0AJA4gh4AEkfQA0DiCHoASBxBDwCJI+gBIHHHTdBfcOMFUw8MnTQ3hWDWFfWRyffLeuJU7TNTNK/5PmX36LQ/TX690cF9HV93ul5ASM9xE/QAcLzqOOhtn2f7QMPXS7Y/2TRnle0XG+Z8pn7JAIB2tPzHwctExBOSLpQk2ydI+omk2wqm7osIeqgCwBzp1ls375b0w4j4UZeuBwDokm4F/QZJN5WMvdP2I7bvtv2WLt0PAFBR7aC3faKk90n694LhhyW9OSJWSPqipNunuc4m28O2h8fGxuqWBQDIdOMV/RpJD0fEs80DEfFSRPws294lab7txUUXiYgdEdEfEf19fX1dKAsAIHUn6Deq5G0b26fadra9MrvfT7twTwBARR1/6kaSbL9O0nskfazh2GZJiojtkq6Q9HHb45J+IWlDRESdewIA2lMr6CPiZUlvbDq2vWH7WknX1rkHAKCe4+LJ2Pwx9QtuvGBye+Tm02mDMJNa/Gyne0x/YOmW0sf721XU/mDPqm2T28deuKawll0rzim8TrPGa5U59sI1k9uN66q6zm2b90y2LKjamqH5ut36eaI3HRdBDwDHM4IeABJH0ANA4gh6AEgcQQ8AiSPoASBxBD0AJI6gB4DEEfQAkDiCHgASR9ADQOKO+6BfMnjXXJeQvoa+N1sH1k3b56bsvHw7P39oaGjK1KrXHB3cp/WL5mtg6ZZqNRTI+85I0tipeye382seXd4/7fkjy5Zr/aL5U4411lNlLXkvnq0D66bUU6Sdn03R/KrnV+3Dg9l33Ac9AKSOoAeAxBH0AJA4gh4AEkfQA0DiCHoASBxBDwCJqxX0tp+y/ZjtA7aHC8Zt+wu2D9l+1PZFde4HAGjfvC5c47KIeK5kbI2kc7Ovt0u6LvsOAJglM/3WzXpJX44JD0laZPu0Gb4nAKBB3aAPSffZ3m97U8H4GZKebtgfzY69iu1NtodtD4+NjdUs69eKWhw0P6pNG4TqWj3mPrJs+ZRH5vPtbZv3vOpR+tHBfa9qj1Bm68glk+PN7QvyR/cbWw8ce+GaaevM5ddqrLNxrKxVQuPxgaVbprRCaJ5T1hJh54LdU/Yb2yLkdeTfj71wjbYOrNOuFee8qoVD81rzsdHBfZM/m3yNjS0oGn/e+e+17PfbaXuD5howN+oG/cURcZEm3qK5yvalTeMuOCeKLhQROyKiPyL6+/r6apYFAMjVCvqIOJx9PyLpNkkrm6aMSjqrYf9MSYfr3BMA0J6Og972620vzLclvVfSwaZpd0j6cPbpm3dIejEinum4WgBA2+p86uYUSbfZzq/zbxFxj+3NkhQR2yXtkrRW0iFJL0v6aL1yAQDt6jjoI+JJSSsKjm9v2A5JV3V6DwBAfTwZCwCJI+gBIHEEPQAkjqAHgMQR9ACQOIIeABJH0KMjr+p9MnSSRpYt18LLd0ia2pumqoGlWyb7ouxcsFtbRy5pOT/vI9PY+2Xngt2T+2W9ahrHGnvRNPes2blgt44u75/8kqbvo9NcT+P3fPuWDQPT1pTPy/vaNPe2KVvHyLLllfvK5H11mnsT5dq5VpHmc9vplUNvnO4j6AEgcQQ9ACSOoAeAxBH0AJA4gh4AEkfQA0DiCHoASBxBDwCJI+gBIHEEPQAkLsmg373nHJ36jQMt512w9Gw9teADemrBB6ShkyaPLxm8aybL6wlDQ0OlxybHsrYHWwfWadv/3jY5b8HJfz3lvLyVQdFj/KPH7tTQ0JAGlm7RzgW7JWnyuzTxOPzo4L4prQGKNJ6T7ze2Nji6vL/0Hvl4o+nu1XxO87XaUXTuzgW7tX7R/MKaiupq5/6N12i8Vt66Iv/efM7Cy3dodHCftg6s09aBdVPaFOS/I0lTxoraHuTjzW0Oio6VKTsf5ZIMegDArxH0AJC4joPe9lm2v2F7xPbjtj9RMGeV7RdtH8i+PlOvXABAu+bVOHdc0t9ExMO2F0rab/v+iPhu07x9EdFev1oAQNd0/Io+Ip6JiIez7aOSRiSd0a3CAADd0ZX36G0vkfS7kr5VMPxO24/Yvtv2W6a5xibbw7aHx8bGulEWAEBdCHrbb5D0VUmfjIiXmoYflvTmiFgh6YuSbi+7TkTsiIj+iOjv6+urWxYAIFMr6G3P10TIfyUivtY8HhEvRcTPsu1dkubbXlznngCA9tT51I0lfUnSSEQU/iOatk/N5sn2yux+P+30ngCA9tX51M3Fkj4k6THb+WOon5Z0tiRFxHZJV0j6uO1xSb+QtCEiosY9AQBt6jjoI+IBSW4x51pJ13Z6DwBAfUk/GXv37Z/S3bd/SpJ06+fGdevnxluf1NDzphflPT+KetXk8rEpPUOydQ8NDU32KBkaGtLQ0FBhb5GFl+/Q6LE7tfDyHTq6vF9jp+7VnlXbJvuu5H1aji7vnxzP9/N+K616tDT3kmnuX5Or2uuluc/NzgW7p5zbWPN0NZWNT1dHfq+iOa1+FmX9cPJz87r2rNpWeH5Rb5vcwst3TNvXZ7oeMts279G2zXtKx4uu1Xiv/M9VY0+c/H6N920cb+6fU7VHTj5vurlFvXlSkXTQAwAIegBIHkEPAIkj6AEgcQQ9ACSOoAeAxBH0AJA4gh4AEkfQA0DiCHoASFxyQX/qNw7oyvu+oAX3/qTl3Fs/N66Rm0/XBUvPnjjQ1P5gyeBdM1FiqbzlQC5/ZLuxDUHzePP5zUYH92nrwLrJ8aIWCUNDQxo9dufk2C0bBqZco/ER/Hys6HH+9YvmS9Jku4PpHq0v03zN6R7/r9L6oGp7hG6f2+oajceLWjIU/RzKWijk8p9/8zWnu3/R+NHl/bplw0BhjXkLi50Ldmv9ovmT99y5YHfLdgplFl6+o/B4c8uC0cF9U+Y2//lvnD+ybHlpS4NWrQ6qtFSYCTN53+SCHgAwFUEPAIkj6AEgcQQ9ACSOoAeAxBH0AJA4gh4AEkfQA0DiagW97dW2n7B9yPZgwbhtfyEbf9T2RXXuBwBoX8dBb/sESdskrZF0vqSNts9vmrZG0rnZ1yZJ13V6PwBAZ+q8ol8p6VBEPBkRv5R0s6T1TXPWS/pyTHhI0iLbp9W4JwCgTY6Izk60r5C0OiL+Itv/kKS3R8TVDXPulPT5iHgg298taUtEDBdcb5MmXvVL0nmSnmizpMWSnmt7Ib2BtfUm1tabenVtb46IvqKBeTUu6oJjzf/VqDJn4mDEDknF3Y2qFGMPR0R/p+e/lrG23sTaelOKa6vz1s2opLMa9s+UdLiDOQCAGVQn6L8j6VzbS22fKGmDpDua5twh6cPZp2/eIenFiHimxj0BAG3q+K2biBi3fbWkeyWdIOn6iHjc9uZsfLukXZLWSjok6WVJH61fcqmO3/bpAaytN7G23pTc2jr+y1gAQG/gyVgASBxBDwCJ66mgT7nlQoW1fTBb06O2v2l7xVzU2YlWa2uY9/u2X8me0egJVdZme5XtA7Yft/3fs11jpyr8mTzJ9n/afiRb20z+HVxX2b7e9hHbB0vGezZLCkVET3xp4i98fyjptyWdKOkRSec3zVkr6W5NfH7/HZK+Ndd1d3FtfyDp5Gx7TUpra5i3RxN/gX/FXNfdxd/bIknflXR2tv+mua67i2v7tKR/yLb7JD0v6cS5rr3i+i6VdJGkgyXjPZklZV+99Io+5ZYLLdcWEd+MiBey3Yc08UxCL6jye5Okv5L0VUlHZrO4mqqs7QOSvhYRP5akiOiV9VVZW0haaNuS3qCJoB+f3TI7ExF7NVFvmV7NkkK9FPRnSHq6YX80O9bunNeiduu+UhOvNnpBy7XZPkPS+yVtn8W6uqHK7+13JJ1s+79s77f94Vmrrp4qa7tW0nJNPAT5mKRPRMSvZqe8GderWVKoTguE2dbVlguvMZXrtn2ZJoL+D2e0ou6psrZ/1kQPpFcmXhz2jCprmyfp9yS9W9JvSnrQ9kMR8f2ZLq6mKmv7Y0kHJL1L0jmS7re9LyJemuniZkGvZkmhXgr6lFsuVKrb9tsk7ZS0JiJ+Oku11VVlbf2Sbs5CfrGktbbHI+L22SmxY1X/TD4XET+X9HPbeyWtkPRaD/oqa/uoJpoWhqRDtv9H0jJJ356dEmdUr2ZJoV566ybllgst12b7bElfk/ShHng12Kjl2iJiaUQsiYglkv5D0l/2QMhL1f5Mfl3SJbbn2X6dpLdLGpnlOjtRZW0/1sT/qcj2KZroOvvkrFY5c3o1Swr1zCv6eO21XOiaimv7jKQ3SvqX7JXvePRAh72Ka+tJVdYWESO275H0qKRfSdoZEYUf6Xstqfh7+3tJN9h+TBNvdWyJiJ5o72v7JkmrJC22PSrps5LmS72dJWVogQAAieult24AAB0g6AEgcQQ9ACSOoAeAxBH0AJA4gh4AEkfQA0Di/h9bkdUiDrfBNQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "#time-course\n", "df2 = pd.DataFrame()\n", "\n", "for i in (iRFP[\"strain\"]==\"SK482\",iRFP[\"strain\"]==\"SK483\"):\n", " for j,l in zip((iRFP[\"chromophore\"]==\"PCB\",iRFP[\"chromophore\"]==\"-BV\"),[\"PCB\",\"-BV\"]):\n", " for k in (0,0.5,1,2,3,5):\n", " if k == 0:\n", " data_tmp = iRFP[(i)&(iRFP[\"condition\"]==\"time\")&(iRFP[\"chromophore\"]==\"PCB\")&(iRFP[\"time\"]==k)]\n", " data_IQR = iRFP.loc[(i)&(iRFP[\"condition\"]==\"time\")&(iRFP[\"chromophore\"]==\"PCB\")&(iRFP[\"time\"]==k),\"ratio\"].values\n", " else:\n", " data_tmp = iRFP[(i)&(iRFP[\"condition\"]==\"time\")&(j)&(iRFP[\"time\"]==k)]\n", " data_IQR = iRFP.loc[(i)&(iRFP[\"condition\"]==\"time\")&(j)&(iRFP[\"time\"]==k),\"ratio\"].values\n", " Q1 = np.quantile(data_IQR,0.25)\n", " print(Q1)\n", " Q3 = np.quantile(data_IQR,0.75)\n", " print(Q3)\n", " IQR = (np.quantile(data_IQR,0.75)-np.quantile(data_IQR,0.25))*1.5\n", " IQR_low = Q1-IQR\n", " IQR_high = Q3+IQR\n", " data_tmp = data_tmp[(data_tmp[\"ratio\"]>IQR_low)&(data_tmp[\"ratio\"]" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "#SK482_dose_PCB & SK482_dose_BV\n", "plt.figure(figsize=(14,7))\n", "plt.rcParams['pdf.fonttype'] = 42\n", "sns.lineplot(data=df[(df[\"strain\"]==\"SK482\")&(df[\"condition\"]==\"dose\")&(df[\"chromophore\"]==\"PCB\")], x=\"time\", y='ratio', ci=\"sd\")\n", "sns.lineplot(data=df[(df[\"strain\"]==\"SK482\")&(df[\"condition\"]==\"dose\")&(df[\"chromophore\"]==\"-BV\")], x=\"time\", y='ratio', ci=\"sd\")\n", "plt.xscale(\"log\")\n", "#plt.savefig(\"20211005-SK482-dose-response-1.pdf\")" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0AAAAGtCAYAAAA/JhQ3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXxcZ333/e+RNKORRttosSVv8r7JC7FDWBogLAEMWQtteboXWqC9ofB0oaG0xEmAENpyl1JaSlu4H7rctHd5aGPHSQhhCxAgIcROJEveHcnal9Hsc+acc91/2FATHEe2NXNm5nzer5dfeKTJnJ9kDa/z1XVdv59ljBEAAAAABEGN3wUAAAAAQKkQgAAAAAAEBgEIAAAAQGAQgAAAAAAEBgEIAAAAQGDU+V3Apers7DSrV6/2uwwAAAAAZeoHP/jBtDGm60Kfq7gAtHr1aj3++ON+lwEAAACgTFmWdfq5PscWOAAAAACBQQACAAAAEBgEIAAAAACBQQACAAAAEBgEIAAAAACBQQACAAAAEBgEIAAAAACBQQACAAAAEBgEIAAAAACBQQACAAAAEBgEIAAAAACBQQACAAAAEBgEIAAAAACBQQACAAAAEBgEIAAAAACBQQACAAAAcMUKrud3CQtCAAIAAABw2YwxOj2d1sDovN+lLEid3wUAAAAAqEyeZ3RiKqVTMxk1RSojWlRGlQAAAADKiusZDY0nNJHIqz0all0hW+AIQAAAAAAuScH1NDCa0FzGVmdTfcWc/5EIQAAAAAAuQa7g6ukz88rarjqi9X6Xc8kIQAAAAAAWJGM7OjQcl+tJbY1hv8u5LHSBAwAAAPC8ErmCfnB6TpKlloaQ3+VcNlaAAAAAAFzUbCqvp0YTagzVKhKq9bucK0IAAgAAAPCcJuZz6h+bV2skrHBd5W8gIwABAAAAuKDh2YyOTCbV3hBWXW3lhx+JAAQAAADgWYwxOjGd1unptDqi9aqtsfwuadEQgAAAAAD8mOsZHZlIamw+q46metVY1RN+JAIQAAAAgHMKrqfB8YRmUrY6o/Wyqiz8SAQgAAAAAJLyztkBp+l8ZQ44XSgCEAAAABBwWdvVoZG4HM8oVqEDTheKAAQAAAAEWDJX0MGRuGqtGrVEKnfA6UIRgAAAAICAimdsHRyOqyFUp4ZwZQ84XSgCEAAAABBAk4mc+kcTao7Uqb4uGOFHIgABAAAAgXNmLqvB8YRijWGFqmTA6UIRgAAAAICAMMbo1ExaJ6twwOlCEYAAAACAAPA8o2NTSY3M5dQRrb4BpwtFAAIAAACqnON6GhpPajKZV2c0XJUDTheKAAQAAABUMdvx1D86r/lsQZ1N1TvgdKEIQAAAAECVyhXODji1HU8dUcKPRAACAAAAqlIq7+jgcFw1stTaEPa7nLJBAAIAAACqzHy2oIPDc6qvq1VjmFv+8xW16bdlWa+3LGvIsqxjlmXddpHnvdCyLNeyrDcXsx4AAACg2k0nc3ri9JwaQnWEnwsoWgCyLKtW0qck7ZG0VdL/Y1nW1ud43j2SHixWLQAAAEAQjMWzOjQyr9aGkCKhWr/LKUvFXAG6RtIxY8wJY4wt6QuSbr7A894t6YuSJotYCwAAAFC1jDE6PZ3WwFhC7dF6hWqLutGrohXzO7Nc0vB5j0fOfezHLMtaLulWSZ++2AtZlvV2y7Ietyzr8ampqUUvFAAAAKhUnmd0fDKlE9NpdUTrVVsT3Bk/C1HMAHSh77x51uO/lPRHxhj3Yi9kjPmMMeZqY8zVXV1di1YgAAAAUMlcz2hwPKHhuaw6omHCzwIU81TUiKSV5z1eIWn0Wc+5WtIXzk2i7ZT0BsuyHGPMfxaxLgAAAKDi2Y6nw2MJxTM2A04vQTED0GOSNliWtUbSGUlvkfSL5z/BGLPmR3+3LOt/SdpP+AEAAAAuLldw9fTIvLKOq3YGnF6SogUgY4xjWda7dLa7W62kzxpj+i3Leue5z1/03A8AAACAn5axHR0ajsv1pDYGnF6yojYGN8YckHTgWR+7YPAxxvx6MWsBAAAAKl0iV9DB4bhCNTVqaWDGz+XguwYAAABUgNlUXofOzCsarmPGzxUgAAEAAABlbmI+p/6xebVGwgrXMePnShCAAAAAgDI2PJvRkcmk2hvCqmPA6RUjAAEAAABlyBijE9NpnWbA6aIiAAEAAABlxvWMjkwkNTafVUdTvWosws9iIQABAAAAZaTgehocT2gmZaszWi+L8LOoCEAAAABAmcg7rp4+M6903lUHA06LggAEAAAAlIGs7erQSFyOZxRrZMBpsRCAAAAAAJ8lcwUdHImr1qpRSyTkdzlVjQAEAAAA+CiesXVwOK6GUJ0awgw4LTYCEAAAAOCTyURO/aMJNUfqVF9H+CkFAhAAAADgg5G5jIbGk4o1hhViwGnJEIAAAACAEjLG6NRMWicZcOoLAhAAAABQIp5ndHQyqTPxnDqiDDj1AwEIAAAAKAHH9TQ0ntRkMq/OaJgBpz4hAAEAAABFZjue+kfnNZ8tqLOJAad+IgABAAAARZQrnB1wajueOqKEH78RgAAAAIAiSeUdHRyOq0aWWhvCfpcDEYAAAACAopjPFHRwZE71dbVqDHPbXS74lwAAAAAW2XQyp6fOJNRUX6dIiAGn5YQABAAAACyisXhWh8cSamPAaVkiAAEAAACLwBijZ2YyOjaVYsBpGSMAAQAAAFfI84xOTKU0PJdVZxMDTssZAQgAAAC4Ao7r6chEUhOJvDoCOuD01Ey6Ys46sSkRAAAAuEy24+np0YSmknl1NtUHMvwcHI7rA196Wv/wyAm/S1kQVoAAAACAy5AruHp6ZF5Zx1V7QAecfm1oUp94+KhWtDXobdeu8bucBSEAAQAAAJconXd0aCQuz5PaAjjg1Bij//jBiD7/3dPasaJVf/jaTQrVVcbmMgIQAAAAcAkSuYIODscVrq1RU0Pwbqddz+jvvnlc9z89rus2dul3X71BkmS7ns+VLUzw/sUAAACAyzSTyuupM/OKhoM54DRXcPVnDw7p+6dm9eZdK/QrL+lVjWWpUCHhRyIAAQAAAAsyHs9qYDyh1khY4QrZ7rWY5rMF3bV/QEcnk3rnK9bpjdt7/C7pshCAAAAAgIswxmhkLqsjk0m1N4RVVxu88DMaz2rvvn7NpG29f88WvXhth98lXTYCEAAAAPAcjDE6PpXW8GxaHY31qq0JXpvrIxNJ3bl/QJ4x+vAt27S5u8Xvkq4IAQgAAAC4ANczOjKR1Hgiq/ZovWoCOOPn+ydndM+DQ2pvDGvvjX1aHmvwu6QrRgACAAAAnqXgehoYTWguY6ujMZgDTu9/ekyf/sZxretq0gdv2Kq2xupo900AAgAAAM6Td1w9fWZe6byrjgAOODXG6J+/94z+/fFhXd0b0x+9fnNVdbwjAAEAAADnZGxHh0bm5XpGsSpZ8bgUBdfTX3/1mL46NKnXbV2q375ufdWdeyIAAQAAAJKS5wac1tbUqCUS8rucksvYju6+f1BPDsf1yy/u1c/vXlGVW/8IQAAAAAi8eMbWweG4GkJ1aghXz3avhZpJ5XXH/gE9M5vRe1+9Qa/estTvkoqGAAQAAIBAm0zk1D+aUHOkTvV1wQs/p2fS2rtvQOm8ow/esFW7VsX8LqmoCEAAAAAIrJG5jIbGk4o1hhUK4IDTp87M68MHBhSurdFHf3a71nY1+V1S0RGAAAAAEDjGGJ2cTuv0TFod0WAOOH3k6JQ+/tAR9bRGtPfGPi1pifhdUkkQgAAAABAonmd0dDKpM/GcOgI64PQ/f3hG//jtk+pb1qIPvGGLmgPU9IEABAAAgMBwXE+D4wlNJW11RsNV2eXsYlzP6LPfPql7D47qZ9Z36vdes1HhumBt/SMAAQAAIBDyjqv+M/NK5hx1NgVvwGnecfXxh47oO8dndPPOZXrrtWsCufpFAAIAAEDVy9qunjoTl+14ao8GL/wkcwXddd9hDY4l9LZr1+iWFyz3uyTfEIAAAABQ1VJ5RweH46qRpdaGsN/llNxEIqe9+/o1kcjpfa/frGvXd/pdkq8IQAAAAKha85mCDo7Mqb6uVo3h4N36HptM6c79/Sq4RnfdvE19y1r9Lsl3wfspAAAAQCBMJ3N66kxCTfV1ioSCN+D0idNz+ugDg2qO1OnDt/RpZXuj3yWVBQIQAAAAqs5YPKvDYwm1BXTA6VcGJvTJrx3V6o6obr+xT+3R4G39ey4EIAAAAFQNY4yemcno2FQqkANOjTH6wmPD+tfvP6OrVrbptj2bA7n172L4bgAAAKAqeJ7RsamkRmZz6mwK3oBT1zP6m68f05cHJvSqzUv07leuV10AV7+eDwEIAAAAFc9xPR2ZSGoikVdnU/AGnGZtVx97cFCPn57TL7xwpX7pmlWB+x4sFAEIAAAAFc12PA2MJTSfsQM54HQuY+vOfQM6MZ3Su165Xq/r6/a7pLJGAAIAAEDFyhVcPT0yr6zjBnLA6Zm5rG7f97TimYL+5I1b9cLV7X6XVPYIQAAAAKhI6byjQyNxGSO1BXDA6eGxhO66b0A1lqWP3LpdG5c2+11SRSAAAQAAoOLMZws6NBJXuLZGjfXBu6V99Pi0/vzLR9TZFNbem/rU09rgd0kVI3g/LQAAAKhoM6m8njozr2g4mANO7zs0qr/75gltXNqsP71hq1obQn6XVFEIQAAAAKgY4/GsBsYSam0IK1wXrBbPnjH6/KOn9MUnzuhFa9r1B6/dFMgAeKUIQAAAACh7xhgNz2Z0dCql9sZw4ObbFFxPn3j4qL5xZEpv2N6jt79sbeCGvC4WAhAAAADKmucZnZhO65nZtDoa6wN345/KO7r7wGEdOjOvX3vJar1p13Jm/FwBAhAAAADKlusZHZlIajyRVWe0PnA3/lPJvO7Y168z8ax+//qNum7TEr9LqngEIAAAAJSlgutpYDSh2UxeHY3BCz+nptPau69f2YKrvTf1aeeKNr9LqgoEIAAAAJSdXMHV06PzyuRddUYjfpdTcgdH4vrIgcNqCNXqoz+7Q2s6o36XVDUIQAAAACgrGdvRoZF5uZ5RrDF4A06/PjSpTzx8VMvbGrT3pj51NtX7XVJVIQABAACgbCRzBR0cjqu2pkYtkWDNtzHG6ItPnNH/9+gpbV/eqj9+wxY1BXDIa7HxHQUAAEBZmEvbOjgSV2OoTg3hYM23cT2jzzxyQgeeGtPLN3Tpva/ZoFDAWn2XCgEIAAAAvptM5NQ/mlBLJBS4Aae5gqs///KQvndyVm/atVy/+pLVqglYw4dSIgABAADAVyNzGQ2NJxVrDAdu1WM+W9Bd+wd0ZCKpd7x8rW7YsczvkqoeAQgAAAC+MMbo5HRap6bT6ogGb8Dp2HxWe+/t13TK1vv3bNZL1nX6XVIgEIAAAABQcq5ndHQyqdF4Vh1N9YHb8nVkIqm79g/I9Yw+dMs2belp8bukwCAAAQAAoKQc19Ph8YSmk7Y6o8EbcPrYqVnd88Cg2hpD2ntjn1bEGv0uKVAIQAAAACgZ2/H09Jm4kjknkPNtHuwf1998/ZjWdjbpgzduDeScI78RgAAAAFASxhgNTSSUzrtqjwYr/Bhj9C/ff0b/9tiwru6N6X2v2xy4Vt/loqhtNizLer1lWUOWZR2zLOu2C3z+ZsuyDlmW9aRlWY9blnVtMesBAACAfybmc5pO2moL2KqH43r6y4eP6t8eG9Zrty7Vn7xxK+HHR0VbAbIsq1bSpyRdL2lE0mOWZd1rjBk472kPS7rXGGMsy9oh6d8lbS5WTQAAAPBH1nY1NJFUW0PI71JKKmM7uvv+QT05HNcvvWiVfuHqlYE781RuirkF7hpJx4wxJyTJsqwvSLpZ0o8DkDEmdd7zo5JMEesBAACADzzPaGgiqVBtjeoCNOdnNm3rjn39OjWT1ntetUGv2brU75Kg4m6BWy5p+LzHI+c+9hMsy7rVsqxBSfdJeuuFXsiyrLef2yL3+NTUVFGKBQAAQHGMzmc1l8mrORKc1Z/h2Yz+4D8Oamw+p9tv6CP8lJFiBqALre391AqPMeZLxpjNkm6RdNeFXsgY8xljzNXGmKu7uroWuUwAAAAUSyrv6OhESrGG4DQ96B+d1/u+eEiO6+kjt27Xrt6Y3yXhPMXcAjciaeV5j1dIGn2uJxtjvmlZ1jrLsjqNMdNFrAsAAAAl4HpGg2MJNYRqVVsTjHMv3zo2rY8/NKQlzRHdcVOflrZE/C4Jz1LMFaDHJG2wLGuNZVlhSW+RdO/5T7Asa7117hSYZVm7JIUlzRSxJgAAAJTIyGxGyZyjaH0wJq/815Nn9LEHBrV+SbP+7M07CD9lqmg/jcYYx7Ksd0l6UFKtpM8aY/oty3rnuc9/WtKbJP2qZVkFSVlJv2CMoRECAABAhUvkCjoxnVKssfq3vnnG6LPfOqn/Ojiql67r0O9fv0nhuuA0e6g0RY3jxpgDkg4862OfPu/v90i6p5g1AAAAoLQc19Ph0YSi4VDVb32zHU8f/8oRffvYtG7auUxv/Zk1Vf81V7pgrEcCAACgZE7NZJQruGqPVvfqTzJX0IcPHFb/aEJvu3aNbnnBTzU8RhkiAAEAAGDRxDO2Ts+k1dlU3eFnMpHT3n39GpvP6X2v26SXbaBTcaUgAAEAAGBRFFxPA2MJtURCqrGqdxvYiamU9u7rl+16uuvmbdq2vNXvknzneqao3dUWEwEIAAAAi+L4VEqOa9RcX+t3KUXzxDNz+uj9g4rW1+mem7eptyPqd0m+y9iO8o6rHSva/C5lQQhAAAAAuGLTyZxG4zl1RsN+l1I0Dx+e0Ce/dkyr2ht1+w1b1VHl2/wWIpkryLKkXb3taqqQdueVUSUAAADKVt5xNTieVGskJKsKt74ZY/Tvjw/rn7/3jF6wsk3v37NZjWFuo2fTeTVF6tS3rFWRUOWs+vEvBwAAgMtmjNHxyZQkVeXsG9cz+ttvHNeD/eN61aYleter1itUW31f56UwxmgmbWtJc702dTerrsK+HwQgAAAAXLapZF4TiZw6myJ+l7LocgVX9zwwqMdPz+nnr16pX37Rqqpc4boUrmc0m85rVUdUazujqqnAmUcEIAAAAFyWXMHV4HhCrQ3Vd+4nnrF1x/4BnZhK6XeuW6c923r8Lsl3BddTPFvQxu5mrYg1+l3OZSMAAQAA4JIZYzQ0nlStVVN1W8JG41ndfm+/ZjO2PvCGLbpmTYffJfkuV3CVth3tWN6izubKXu0jAAEAAOCSjcVzmk3bVTfwdHA8oTv3D6jGsnT3rdu1cWmz3yX5LpVz5MrTrt6YWiIhv8u5YgQgAAAAXJJ03tGRyaTaGir/Zvh83z0xoz97cEgdTWHtvbFPy9oa/C7Jd/GMrUioRi9Y3q6GcOV0ersYAhAAAAAWzPOMBscTqq+rrbjuXxdz31Nj+sw3j2v9kiZ98IY+tVZZuLtUxhjNZmzFGsPa0tNSVR3+CEAAAABYsJG5jJI5Rx3R6tj65hmjzz96Wl98YkTXrG7XH75uU0XNtCmGs53ebC2PRbR+SbNqK7DT28UQgAAAALAgyVxBx6fSijVWR9e3guvprx4+qq8fmdKebd16x8vXVd3N/qUquJ7msrbWdzVpVUdjVbb9JgABAADgebme0eBYQo3h2qoICem8o4/cf1iHRub1qy/p1Zt3rajKm/1L8aNOb9uXtWpJS2V3ersYAhAAAACe1+mZtNK2WxVb36ZTed2xr18jc1n93vUb9cpNS/wuyXfpvKOC6+mqlTG1Nlb3+ScCEAAAAC5qPlPQqem0Oqqg5fXpmbT27utXOu9q74192rmyze+SfJfIFVRbY2lXb0zR+uqPB9X/FQIAAOCyFVxPh8fm1RwJqabCt4gdGonrIwcOqz5Uq3vetF1rOpv8Lsl3s+m8WhpC2rqsRfV1wWj+QAACAADAczo5nVLO8dQRrextUd84MqW//MoRLWtr0N4b+9TVXPmrWVfCM0azmbyWNke0cWlzVbU0fz4EIAAAAFzQXNrW8FxWXRV87scYoy/98Iw+951T2rasRR9441Y1BWCb18W43tnws7ojqjWd0cA1fwj2vz4AAAAuyHY8DYwl1BoJVewNsusZ/cMjJ7T/qTG9fEOn3vuajQoFaKXjQmzH03zW1paeFvW0Nfhdji8IQAAAAPgpx6dS8jxTsedC8o6rv/jyET16Yka3XrVcv/7S1RV/hulKZW1XmYKjnSvbqqKhxeUiAAEAAOAnTCVzGp/PVmzL6/lsQR+6b0BD40n91svW6qady/wuyXfJXEFG0u7emJojlX2e60oRgAAAAPBjuYKrwfGkWhvCFbn1bXw+p737+jWVzOu2PZv10nWdfpfku7mMrcZwrbYtb1UkVJkreouJAAQAAABJZxsGHJ1MqsayKvKszNGJpO7cPyDXM7rrlm3a2tPid0m+MsZoJm2rszmszd0tFflvWgwEIAAAAEiSJuZzmk7a6qzA8yGPn5rVPQ8OqiUS0t6b+rQy1uh3Sb76Uae3FbEGre9qVk1N5a3mFQsBCAAAAMraroYmkmprqLzzIV8eGNenvnZMazqjuv2GPsWiYb9L8lXB9TSXsbVxabNWxBoqcitjMRGAAAAAAs7zjIYmkgrV1lTUQExjjP71+8/oC48Na9eqmG57/WY1hIN9xiVXcJXKO9qxolVdzRG/yylLBCAAAICAG53Pai6TV2e0cm6YHdfTp75+TF85PKnrtyzV71y3rqLCWzGk8o5cz9Ou3phaK3Alr1QIQAAAAAGWyjs6OpFSrLFyzv1kbEf3PDCoJ56J6xevWaW3vHBl4Ld5zWdthWprtLM3psYwt/gXw3cHAAAgoFzPaHAsoYZQrWor5JD8bNrWHfv7dWo6rXe/ar1eu7Xb75J8ZYzRbMZWW2NYW3taFK4L9irYQhCAAAAAAmpkNqNkzqmYrm/DcxntvbdfiVxBf3rDVl3d2+53Sb7yzrW57mmNaOPS5ooJsX4jAAEAAARQIlfQ8emU2itk61v/6Lw+dN9h1dVauvvWHVq/pMnvknzluJ5mM7bWdUXV2xEN/BbAS0EAAgAACBjH9XR4NKFouK4iVg2+fWxaf/HQkJY0R7T3pj51t1ROs4ZiyDuuErmC+npa1N3W4Hc5FYcABAAAEDCnZjLKFVy1R8t/9efeg2f0D4+c1ObuZv3JG7eqJeDdzTK2o7zjateqmNoagz3v6HIRgAAAAAIknrF1eiZd9ud+PGP0uW+f0n8+eUYvWduh33/tRtXXBXvGTyJXUI0l7eptV1M9t/GXi+8cAABAQBRcTwNjCbVEQqop4zMjBdfT//zKET1ydFo37OjRb167tiK26hXTbDqvpkid+pa1KhIKdhC8UgQgAACAgDg+lZLjGjXXl+8NdCrn6MMHBvT0aEK/8dLVuvWq5YE+4G/OdXpb0lyvTd3NgR/2uhgIQAAAAAEwncxpNJ5TZ7R8z41MJnPau29AY/Gs/vC1m/TyjV1+l+Qr1zOaTee1qiOqtZ1R1QR8FWyxEIAAAACqXN5xNTieVGskVLarKSenU9p774Dyjqs7b+rT9hVtfpfkq4LrKZ4taFN3i5bH6PS2mAhAAAAAVcwYo+OTKUlSuK48t089ORzXRw4cVrS+Vve8aYd6O6J+l+SrrO0qU3C0Y3mLOpuD3fK7GAhAAAAAVWwqmddEIqfOpvK8kf7q4KT+6qtHtTLWoL039qmjzLvTFVsq58iVp129MbVEgt3yu1gIQAAAAFUqV3A1OJ5Qa0P5nfsxxuj//GBE//Td09q5olXv37NF0YC3do5nbDWEanXVinY6vRVRsH/KAAAAqpQxRkPjSdVaNQqVWecw1zP6u28e1/1Pj+u6TV363VdtKLsaS+lHnd7ao2Ft6Wkp262K1YIABAAAUIXG4jnNpu2yG3iaK7j6sweH9P1Ts/q53Sv0Ky/uLdvGDKVwttObreWxiNYvaQ78vKNSIAABAABUmYzt6MhkUm0N5XWGJJVzdPu+p3VsMqXffsU6vWF7j98l+argeprL2tqwpEkr2xsDHQRLacEByLKsnZJedu7hI8aYg8UpCQAAAJfL84wOjyVUX1tbVkMzC66nDx8Y0ImptN6/Z4tevLbD75J8lSu4SuUdbV/WqiUt5dmgolot6F1hWdZ7JP2LpCXn/vyzZVnvLmZhAAAAuHQjcxklso6aIuWz0cczRn/5laN6ejSh975mY+DDTzrvKFdwtWtVjPDjg4W+M94m6UXGmLQkWZZ1j6RHJX2yWIUBAADg0iRzBR2fSivWWF5d3/7p0dP65tEp/dpLVusVG7v8LsdXiVxBtTWWdq+OqTFcPiE1SBb6Xbckuec9ds99DAAAAGXA9YwGxxJqDNeW1UH6+58e0388MaI927r1pl3L/S7HV7PpvFoaQtq6rEX1dbS59stCA9DnJH3PsqwvnXt8i6R/LE5JAAAAuFSnZ9JK2646ouXT9e37J2f16W8c1wtXx/SOl68L7CF/zxjNpPPqbolo49LmsjqbFUQLCkDGmI9blvV1Sdfq7MrPbxhjfljMwgAAALAw85mCTk2n1VFGLa+PTCT1sQcHtbarSe973eayWpUqJdczms3ktbojqjWd0cCGwHJy0QBkWVaLMSZhWVa7pFPn/vzoc+3GmNnilgcAAICLKbieDo8n1BwJqaZMbq7HEzndtX9AbY0hffCGrYqEgrndy3Y8zWdtbelpUU9bg9/l4JznWwH6V0k3SPqBJHPex61zj9cWqS4AAAAswMnplHKF8tn6lsgWtPfefrme0d4b+8quIUOpZOyznd5esLJN7WW0MofnCUDGmBvO/e+a0pQDAACAhZpL2xqey6qrTMKP7Xj68IHDmkzmdNfN27Qi1uh3Sb5I5gqSJe1e3a6mejq9lZuFzgF6eCEfAwAAQGnYjqeBsYRaI6GyOFfiGaP/+ZUjGhhL6Peu36S+Za1+l+SLuYytcF2Ndq2KEX7K1POdAYpIapTUaVlWTP/d+rpF0rIi1wYAAIDncHwqJc8zZdNO+X9955S+dWxab/2Z1bp2faff5ZScMUazGVsdTWFt7m5RiE5vZev5Yuk7JL1XZ8POD/TfASgh6VNFrAsAAADPYSqZ0xe1f5YAACAASURBVPh8tmzO/ew/NKov/fCMbtjeo1teELxZPz/q9LYq1qi1XU2qCWjHu0rxfGeAPiHpE5ZlvdsY88kS1QQAAIDnkCu4GhxPqrUhXBZb3757Ykaf+eYJvWhNu37zZWvLoqZSKrie5jK2Ni5t1opYQ+C+/kq00DlAn7Qsa5ukrZIi533888UqDAAAAD/JGKOjk0nVWFZZbLEaGk/qz748pI1Lm/UHr90UuFk/uYKrVN7RjhWt6mqOPP9/gLKwoABkWdbtkq7T2QB0QNIeSd+SRAACAAAokYn5nKaTtjrLoK3y2HxWd+7vV0c0rD8N4KyfVN6R63na1RtTa0PI73JwCRb6q4M3S3q1pHFjzG9I2inJ/3ceAABAQGRtV0MTSbWVwc32/LlZP0bS3hv7AhcA4llbtTXS7t72wH3t1WChvflyxhjPsizHsqwWSZNiCCoAAEBJeJ7R0ERSodoa1fm89S3vuPrQfQOaTtn68C3btKytwdd6SskYo5lMXu2N9drS06Jwnf/bEHHpnjcAWWdPch2yLKtN0t/rbDe4lKTvF7k2AAAASBqdz2ouk1dn1N9zJq5n9BdfPqKh8aRu27NZm3tafK2nlDxjNJO2taytQRuWNAfuvFM1ed4AZIwxlmW9wBgTl/Rpy7IekNRijDlU/PIAAACCLZV3dHQipVij/6cPPvvtk3r0xIx+62Vr9NJ1wZn147ieZjO21nc1aVVHI53eKtxCt8B917KsFxpjHjPGnCpmQQAAADjL9YwGxxJqCNX6vuLwX0+e0b0HR3XTzmW6aWdwZv3kHVfJnKO+nhZ1B2i7XzVbaAB6paR3WJZ1WlJaZweiGmPMjqJVBgAAEHAjsxklc47vXd++fWxa//itk3rpug697do1vtZSShnbUd5xddWqNrU1hv0uB4tkoQFoT1GrAAAAwE9I5Ao6Pp1Su89b3w6PJfTxh45oc3ezfu/6jaoJyPavRK6gGutsp7do/UJvmVEJFjoI9XSxCwEAAMBZjuvp8GhC0XCdr1vfzsxlddd9A+psCusDb9yq+rpgzPqZSefVHKlT37LWwM03CgLiLAAAQJk5NZNRruCqPerf6k88Y2vvvn7VWJb23hSMWT9nO73ltbQ5ok3dzb63HEdxEIAAAADKSDxj6/RM2tdzP7mCq7vuG9BsxtZHbtmuntbqP/zvekaz6bxWdUS1tjOqGtpcV62ixlrLsl5vWdaQZVnHLMu67QKf/yXLsg6d+/Mdy7J2FrMeAACAclZwPQ2MJdQSCfl21sb1jP78y0M6NpnSH752kzZ1N/tSRykVXE+z6bw2dbdo/ZImwk+VK9oKkGVZtZI+Jel6SSOSHrMs615jzMB5Tzsp6RXGmDnLsvZI+oykFxWrJgAAgHJ2fColxzVqrvfn3IkxRn//yAl97+Ss3vnytXrx2g5f6iilrO0qU3C0c2WbOnzutofSKOYK0DWSjhljThhjbElfkHTz+U8wxnzHGDN37uF3Ja0oYj0AAABlazqZ05m5rNp8PGvzpR+e0X1PjenWq5brjTuW+VZHqaRyjmzP1e7eGOEnQIoZgJZLGj7v8ci5jz2Xt0m6v4j1AAAAlKW842pwPKm2hrAsn7a+PXJ0Sp/7zildu75Tv/7S1b7UUErxjK1QraWre9vVHKn+Bg/4b8VsgnChd6+54BMt65U6G4CufY7Pv13S2yVp1apVi1UfAACA74wxOj6ZkiSF6/zpOtY/Oq+PP3REfcta9P++prpn/RhjNJO21dEU1paeFoXo9BY4xfwXH5G08rzHKySNPvtJlmXtkPQPkm42xsxc6IWMMZ8xxlxtjLm6q6urKMUCAAD4YSqZ10Qip9aGsC/XH57L6EP3HdbSlog+8IYtvoWwUnC9s+FneSyivmWthJ+AKua/+mOSNliWtcayrLCkt0i69/wnWJa1StL/L+lXjDFHilgLAABA2ckVXA2OJ3wLP3NpW3vv7Vdd7dlZP9W8FazgeprJ5LWuK6oNS5p9HTALfxVtC5wxxrEs612SHpRUK+mzxph+y7Leee7zn5b0QUkdkv7m3H5XxxhzdbFqAgAAKBfGGA2NJ1Vr1fiyEpEruLpz/4DmswXdfet2dbdESl5DqeQKrlJ5R9uXtWpJFX+dWJiiDkI1xhyQdOBZH/v0eX//TUm/WcwaAAAAytFYPKfZtO3LwFPXM7rngUGdmE7pA2/Yqg1Lq3fWTzrvqOB52rUqptbG6l3hwsIVNQABAADgp2VsR0cmk760vDbG6O++eVyPn57T71y3TtesaS95DaWSyBVUV2Npd29MjWFue3EWPwkAAAAl5HlGh8cSqq+tVZ0PW9/+44kR3f/0uN68a4X2bOsp+fVLwRijuYyt1sawtvQ0q77On8GyKE+0vgAAACihkbmMEllHTZHS/x7660OT+vyjp/WKjV36lZf0lvz6peAZo+l0XktaItq2rIXwg5/CChAAAECJJHMFHZ9KK9ZY+q5vT43E9YmHj2r78la959UbqnLWj+N6msvaWt0R1ZrOqG9DZVHeCEAAAAAl4HpGQ2NJNYZrS96C+fRMWh8+cFg9bQ364z1bqnL+je14ms/Z2tLdop62Br/LQRkjAAEAAJTA6Zm0Urajjmhpu77NpPLau29A4boa7b1hqy9b74otYzvKFVxdtTKmWNSfmUqoHNX3DgAAACgz85mCTk2n1VHiltcZ29Gd+weUyhf00Z/dUZUzcBLZgqwaaffqdjXVc2uL51d9658AAABlpOB6OjyeUHMkVNJzN47r6Z4HBnVqJq3bXr9F67qaSnbtUplN51UfqtGuVTHCDxaMnxQAAIAiOjmdUq7glnTrmzFGf/ON43rimbje9cr12t0bK9m1S8EYo9mMra6mem3sbq7KM00oHgIQAABAkcylbQ3PZdVV4nM///74sB4amNAvXL1Sr+vrLum1i831jGYzea2KNWptV5NqStxQApWPAAQAAFAEtuNpYCyh1kiopO2Yvzo4oX/+3jN65aYu/dKLVpXsuqVQcD3NZWxtXNqsFbEG2lzjshCAAAAAiuD4VEqeZ0o6iPPgcFx/9dVj2rmiVe9+1YaqCgi5gqtU3tGOFa3qaq6+Zg4oHQIQAADAIptK5jQ+ny3puZ9T02l95P7DWtHWoPdX2ayfVN6R63navTqmlkjI73JQ4QhAAAAAiyhXcDU4nlRrQ7hkKzDTqbz27utXQ6hWt9/Yp2gVdUSLZ23V19XoBSvb1RAu3Woaqlf1vDsAAAB8ZozR0cmkaiyrZCswGdvRHfv6lbFd3fOm7epqLm3DhWL5Uae3WGNYW3paFK6rnhUt+IufJAAAgEUyMZ/TdNIu2TYtx/V09/2DGp7L6v17NmtNZ3XM+vGM0XTaVndrRNuWtxJ+sKhYAQIAAFgEWdvV0ERSbQ2lCT/GGH3ya8f05HBc73n1Bl21qjpm/Tiup9mMrfVdTVrV0VhVjRxQHghAAAAAV8jzjIYmkgrV1qiuRFvf/vf3n9FXByf1i9es0mu2LC3JNYst77hK5hxtW9aqpa10ekNxEIAAAACu0Oh8VnOZvDqjpblpf2hgXP/7sWG9ZssSveWFK0tyzWLL2I7yjqurVrWprTHsdzmoYgQgAACAK5DKOzo6kVKssTTNB544Pae//toxXbWyTf/juvVVsUUskSuoxpJ297ZXVQc7lCd+wgAAAC6T6xkNjiXUEKpVbU3xg8iJqZQ++sCgejuium3P5pJttyum2UxezfV12rqsVZEQba5RfAQgAACAyzQym1Ey56izqfirP5PJnO7YN6Bofa1uv2GrGsOVfRvnGaOZdF7dLRFtXNpcFWEOlaGy3zkAAAA+SeQKOj6dUnsJtr6l8o7u2DegnOPqY2/aoY4SBK5icj2j2XRevZ1RremIqqYEq2fAjxCAAAAALpHjejo8mlA0XFf0rW8F19PdBw5rNJ7V3pv61NsRLer1is12PM1nbW3qbtHyWIPf5SCAWGsEAAC4RKdmMsoV3KJvQzPG6K++elSHzszrd1+9QTtXtBX1esWWsR2l8gXtXNlG+IFvCEAAAACXIJ6xdXomXZJWzf/8vWf09aEp/fKLe/XKTUuKfr1ims/aMpJ2r26v+C18qGxsgQMAAFiggutpYCyhlkhINUVuP/3A0+P698eH9bqtS/Xzu1cU9VrFZIzRTNpWezSszT3Nqq+j0xv8RQACAABYoONTKTmuUXN9cW/iHz81q7/9xjHt7o3ptyt41o/jeprL2FrV3qi1XU00O0BZIAABAAAswHQypzNzWXUVefvWscmU7nlwUGs6o/qj120uyXyhYsgVXCXzBW3paVFPG+d9UD4IQAAAAM8j77gaHE+qrSFc1NWYiUROd+7vV0skpA/e0KeGcGVuF0vlHDnG0+5V7WptDPldDvATCEAAAAAXYYzR8cmUJClcV7z+Uamcozv29ct2PX3olu1qjxa/yUIxzKbziobr9ILl7RUb4FDdCEAAAAAXMZXMayKRU2dTpGjXKLiePnRgQGPzOd158zatam8s2rWKxTNGM+m8ljZHtLG7WaFamg2jPBGAAAAAnkOu4GpwPKHWhuKtxnjG6C+/ckT9own9wWs3afvy1qJdq1gKrqe5rK11nVH1dkQrtmkDgoEABAAAcAHGGA2NJ1Vr1RR1NePzj57WN49O69deslqv2NhVtOsUS9Z2lSk42r6sVUtairdKBiwWAhAAAMAFjMVzmknbRe36duCpMX3xiRHt2datN+1aXrTrFEsiV5BlSbt7Y2qO0OwAlYEABAAA8CwZ29GRyaRiDcW7qf/+yRn93TeP64WrY3rHy9dV1LYxY4xmM7ZaG0La0tOiSIhmB6gcBCAAAIDzeJ7R4bGE6mtrVVekrW9HJpL62INDWtvVpPdV2Kwf1zOay9ha1hbR+iXNFVU7IBGAAAAAfsLIXEaJrKPOIm19G5/P6a79A2prDOmDN2ytqNUT2/E0n7W1sbtZy9saKmrVCvgRAhAAAMA5yVxBx6fSijUWp+tbIlvQ3n39cj2jvTf2Fe06xZDOO7JdV1etiilWoTOKAEmiQTsAAIDObu0aGkuqMVxblG1dtuPpQwcOazKZ0wfeuEUrYpUz6yeetc81O2gn/KDisQIEAAAg6ZnZtFK2o47o4m9984zRx79yRIfHEvqj129W37LKmPXjmbPnfTqawtq0tEXhOn53jspHAAIAAIE3ny3o5FRaHUU69/O5b5/St49N660/s1rXru8syjUWm3NuuOmq9qjWdkZVQ7MDVAkCEAAACLSC6+nwWELNkZBqinCof9/BUf3nk2d0w44e3fKCypj1kyu4SuUdbe1uUXdbg9/lAIuKAAQAAALt1HRauYJblK1vj56Y0d8/ckIvXtuu37x2bUV0TUvmCvKM0a7emFqLOAcJ8AsBCAAABNZc2tYzcxl1FSH8DI4n9OcPDmnj0mb9/vWbKmJezkw6r6b6Om1b3lpR7bmBS0EAAgAAgWQ7ngbGEmqNhBZ9ZWY0ntVd+wfU0RTWn1bArB/XM5rN5NXdEtHGpc1FGwALlAMCEAAACKTjUyl5nlF93eKGk/lzs36MpL039pX9NrKC6ymetbWus0mrOhorYpsecCUIQAAAIHCmkjmNz2cX/dxP3nF11/4BzaRsffiWbVpW5g0EMrajnONp+/JWdTVH/C4HKAkCEAAACJRcwdXgeFKtDeFFXe1wPaO/+PIRHZlI6rY9m7W5p2XRXrsYErmCaixpd29MTfXcEiI4+GkHAACBYYzR0cmkaixLoUU+5/LZb5/Uoydm9FsvW6OXrivfWT/GGM1mbLU1hrWlp3nRtwAC5Y4ABAAAAmNiPqfppK3ORR54+p9PntG9B0d1885lumln+c76cT2juUxey2MNWtfVXBGd6YDFRgACAACBkLVdDU0k1bbITQm+fWxan/3WSb10XYfeeu2aRX3txZR3XCWyBW3qbtGytgjNDhBYBCAAAFD1PM9oaCKpUG3NorZ4HhhL6C8eGtLm7mb93vUbVVOmoSKVd+S4nnb1xtTWGPa7HMBXNHkHAABVb3Q+q7lMXs2RxVv9OTOX1Yf2D6irqV4feOPWsj1LM5exVVsj7V5N+AEkVoAAAECVS+UdHZ1IKda4eOd+4hlbe/f1q6bG0t6bynPWj2eMZtO2ljTXa2N386I3fQAqFQEIAABULdczGhxPqCFUu2gH/nMFV3fuH9Bsxtbdt25XT2v5zfopuJ7mMrbWdEa1uiOqGpodAD9GAAIAAFVrZDajZNZZtK5vrmf0518e0vGplP74DVu0cWnzorzuYsoVXKXyjrYta9XSVoabAs9GAAIAAFUpkSvo+HRK7Yu09c0Yo888ckLfOzmrd758rV60pmNRXncxJbIFGcto9+qYWhbxvBNQTQhAAACg6jiup8OjCUXDdYu29e1LPzyjA0+N6WevWq437li2KK+5WIwxmsvYaorUqW9ZqyKh8mzIAJQDAhAAAKg6p2YyyhVctUcXZ/XnkaNT+tx3TullGzr1ay9dvSivuVhc72yzg562iDYsaVrUNt9ANSIAAQCAqhLP2Do9k160cz9Pn5nXxx86or5lLXrvq8tr1k/B9RTPFrRhaZNWxBoYbgosAAEIAABUjYLraWAsoZZIaFGCyvBsRh86MKDu1og+8IYtCteVz+pKxnaUK7jauaJVHYsU9oAgIAABAICqcXwqJcc1aq6/8jMwc+mzs35CtTW6/ca+RR2ieqXms7bqamt09ep2Reu5nQMuBe8YAABQFaaTOZ2Zy6prEVZDsrarO/b3az5b0N23bld3S3m0kzbGaCZtqz0a1paelrJakQIqBQEIAABUvLzjanA8qbaG8BWfg3E9o489OKiT02n9yRu3akOZzPo52+wgr1XtjVrb1cRwU+AyEYAAAEBFM8bo+GRKkq54RcQYo7/9xnE9fnpOv3PdOr1wdftilHjFcgVXyXxBW3pa1NPW4Hc5QEUjAAEAgIo2lcxrIpFTZ9OVb1P7jx+M6MH+cf3c7hXas61nEaq7cqmcI8d42r2qXa2N5XMOCahUBCAAAFCxcgVXg+MJtTaEr/i1vj40qc9/97ResbFLv/zi3kWo7srNpvOKhuv0guXtaggz3BRYDAQgAABQkYwxGhpPqtaqUegKh38eGonrEw8f1fblrXrPqzf4PuvHM0azmbyWNEW0sbv5ir8+AP+NAAQAACrSWDynmbR9xV3fTs+k9ZEDh9XT1qA/fsMW38NGwfU0l7W1rjOq3o4ow02BRUYAAgAAFSdjOzoymVSs4crOxMyk8tq7b0D1dbXae+NWNfk8Uydru8oUHG1f1qolZdJ6G6g2BCAAAFBRPM/o8FhC9bW1qruC1ZqM7ejO/QNK5x3d/bPbtaTZ38CRyBVkWdLu3lhZDV0Fqg0bSgEAQEUZmcsokXXUFLn83+M6rqd7HhjUqZm0/uj1m7Wuq2kRK7w0Z4eb5tUYrtWuVYQfoNiKGoAsy3q9ZVlDlmUdsyzrtgt8frNlWY9alpW3LOsPilkLAACofMlcQSem04o1Xn7XN2OM/uYbx/XEM3H9j1eu1+7e2CJWeGlcz2gmbaunNaIdK9oUCdHpDSi2om2BsyyrVtKnJF0vaUTSY5Zl3WuMGTjvabOSflfSLcWqAwAAVAfXMxoaS6ohVKvamstvDPBvjw/roYEJ/cILV+q1W7sXscJLYzue5rO2NnY3a3lbA80OgBIp5grQNZKOGWNOGGNsSV+QdPP5TzDGTBpjHpNUKGIdAACgCjwzm1bKdtQYvvzf3z58eEL/8r1n9KpNS/RL16xaxOouTTrvKG0XdNWqmFbEGgk/QAkVMwAtlzR83uORcx8DAAC4JPPZgk5OXdnWtyeH4/rk145p54pWvetV630LHfGsfa7ZQbti0Ssf4Arg0hSzC9yF/l/FXNYLWdbbJb1dklat8u+3NQAAoPQKrqfDYwk1R0KXPaD05PTZWT8rYw16/x5/Zv14xmguY6ujKaxNS1sUrqMXFeCHYr7zRiStPO/xCkmjl/NCxpjPGGOuNsZc3dXVtSjFAQCAynBqOq1cwb3sBgHTqbzu2NevxnCtbr+xT1EfZv04rqeZdF4rYo3q62kl/AA+Kua77zFJGyzLWmNZVljSWyTdW8TrAQCAKjOXtvXMXEbtl7n1LZ13dMe+fmVsV7ff2KfOpvpFrvD55Qqu4tmCtna3aP2SJtVcQQMHAFeuaL8CMcY4lmW9S9KDkmolfdYY029Z1jvPff7TlmV1S3pcUoskz7Ks90raaoxJFKsuAABQGWzH08BYQq2R0GWd1ym4nj76wKCG57K6/YatWtMZLUKVF5fMFeQZo129MbU2MN8HKAdFXQM2xhyQdOBZH/v0eX8f19mtcQAAAD+Wzjs6OZ2W5xnV11361jdjjP76a8f05HBc73n1Bl21qvSzfmbSeTXV12nb8lbm+wBlpPSbYAEAAC7AGKNEztHwbFpTybxCtbWXvWryr99/Rl8dnNQvXrNKr9mydJErvTjXM5rN2OpuqdfGpc2q86HhAoDnRgACAAC+8ryz3dFOzqSVzDqK1NWqI1p/2W2qHxoY1xceG9b1W5bqLS9c+fz/wSIquJ7iWVvrOpu0qoP5PkA5IgABAABfOK6n6WReJ2fSyjmeoqG6K25S8MTpOf31147pqpVt+p3r1pU0gGRsRznH047lrepsjpTsugAuDQEIAACUVN5xNTGf0zOzGRVco5ZISE31V94g4MRUSh99YFC9HVHdtmdzSbeeJXIF1VjS7t6Ymnxosw1g4XiHAgCAksjYjkbjWY3MZSVJrZHQooWUyWROd+wbULS+TrffsFWN4dLc4hhz9rxPW2NYW3qaL6thA4DSIgABAICims8WNDKX0WQir1CtpVhjWDWLuDUtlXd0x74B5R1X97xphzpKNOvH9YzmMnktjzVoXVezapnvA1QEAhAAAFh0nmcUzxZ0aiateMY+19ggvOhncgqup7sPHNZoPKu9N/Wpt6M0s37yjqtEtqBN3S1a1hah2QFQQQhAAABg0Tiup5lUXidnMsoWXDWGatXVVJyGAMYY/dXDR3XozLx+7/qN2rmirSjXebZU3pHjetrVG1NbY7gk1wSweAhAAADgiuUdV5OJvE7PpOV4Rk31deqMFncr2j9997S+fmRKv/LiXr1y05KiXutH4hlb9aEa7VwZK9k5IwCLi3cuAAC4bFnb1Zl4VmfmMjJa3MYGF/PA0+P6Pz8Y0eu2LtXP7V5R9Ot5xmg2bWtJc702djcrxHBToGIRgAAAwCVL5Aoamc1qMplTbY2l1oZwyZoAPH5qVn/7jWO6ujem375ufdHP3xRcT3MZW2s6o1rdEVUNzQ6AikYAAgAAC2KMUTxT0OmZtGbPNTZob1z8xgYXc2wypXseHNSazqje97rNRQ9duYKrVN7RtmWtWtrKcFOgGhCAAADARbmeOdvYYDqtjO2qMVy8xgYXM5HI6Y79/WqJhHT7DX1qCBd35k4iW5CxjHavjqklcuWDWgGUBwIQAAC4INvxNJnM6fRMRgXXUzRcp84Szdh5tlTO0d59/Sq4nj5yy3bFosXrvmaM0VzGVlOkTn3LWhUJMdwUqCYEIAAA8BNyBVdn5rI6E8/IGKk5EvJ1BaTgevrQgQGNz+d0183btLK9sWjXcj2j2YytntaINixpKklDBwClRQACAACSpGSuoDPxrMbiOdX93/buPEaS674P+PdX1dfc5y659zEiKTIriqslV+LIFhJDcETBiRTKSaQ4USQocozE/i8CFCD/BjEQBAiEKBYUxFD8R2IkcpBIjgMDAYIY0JA6qJOSLImzB7kHtTs9507P9FHvlz/q6FfV1cccPd09/f0As9396tWr172vu9+vX71XjmCycHQLGzRjVPFv/8/P8eN7m/jcrz+FK2emunasqmewvlPFEyfHcXZmhBc3JTqmGAARERENMVXFxk4Vt1a2sVaqIuc6mBs72oUNWvmjV27hL36xgk8tXsQHnjzRteOUKjXsVj28++wU5np0mh8RHQ0GQEREREMoXNjgdnEb25UaCpneze9p5n/98B7+5Lt38dKVx/Hy1TNdO87GTgUZ18HzF2cxlmfXiOi447uciIhoiFQ9g4ebZdxa3Ua55mE8l8XcWH8t7/z25i7+388f4j9/8zauX5zFP/7AQldGpFQVxe0KZsdyePrUJHIZzvchGgYMgIiIiIbAbtXD/Y0dvLW6A6OKyUIWE/n+Wdr5rdUSlm4UsbS8ghsPtwEAz52bxuf++lNdmYfkGcXqdhnnZ0dx+cQ4L25KNEQYABERER1jj8o13F0r4d76LlxHMFnI9nxhA8Affbm5so2lZT/oeWttBwDwzscn8OnFi1hcmMfjXbrw6G7Vw1a5iqdPTeLU9EhXjkFE/YsBEBER0TETLmxwe7WE1UcVZF0Hs2M5OD1e2MCo4ue/3MLSchGvLBfx9uYuHAH+yukpfPhdp/Di5bmuL0DwaLeGmhpcOz+LqdH+GQEjoqPDAIiIiOiYMEZR3C7j9koJW+UaRrJuzxc28IziJ/c2sHTDD3qK2xVkHMGzZ6fxm9fO4n2X5zA1cjSByOp2GWO5DJ47M4uRHC9uSjSsGAARERENuKpnsLJVxs3iNio1g7Fcb1d0q3oGP7qzgaXlFbx6cxUbO/7y2u+5MI1/uDCPFy7OYvwIV1szqlgtlXFyvIAnH59Alhc3JRpqDICIiIgG1G7Vwy83dvHmWgme6e3CBuWah++9uY6l5RV869YqtsseRrIunr84g8WFeVw7P9OTUZeqZ7C2U8HC/BguzI31zfWNiKh3GAARERENmO1yDXfWSri3sQtXerewQalSw2u31/CN5SJeu72K3arBeD6D916aw/sX5vDcuZmeLi29U/FQqtbwrtNTODnZX0t9E1HvMAAiIiIaAKqKzZ0a3lzdxsqjMrKui9nRo1/Y4NFuZJB/9wAAIABJREFUDd+6VcTSchHffXMNVU8xPZLFX33yJBYX5vCuM1PI9MEpZpu7VYgA1y7MYKLAxQ6IqI4BEBERUR8zRrFWquBmcRubO/7CBnNj+SM9lWu9VMGrN1axtLyCH97dgGcU8+N5vHTFX7nt6VOTfbG0NuAHiqulCqZGsnj61CQKWS52QERxDICIiIj6UM0zeLhVxq3iNnar/sIGJ45wYYOVR+XoGj0/vb8Jo8CpqQI++txpLC7M44mT4303n8YLgsXT0wW84+RE3wRlRNRfGAARERH1kXItWNhgtYSq5y9sMH5ECxvc39iJrtHzs19uAQDOz47i7zx/DosL87g4N9p3QU+oUjPY2KngyccncGZ6pG/rSUS9xwCIiIioD5QqNdxd28Hd9R0IgMlCtutzaVQVb66W8MoNf07PzZVtAMA7Tozjk++7gBcX5nB2ZrSrdTgM2+UaKp6Hq+dnMDOW63V1iKjPMQAiIiLqoY2dKu6slfBgs4yMI5jp8sIGqorlh9tYWl7B0nIxCrjeeWoSn3n/Jby4MIfHBmjFtPWdCnKug2sXZjF2hNcWIqLBxU8KIiKiI2aMYn2nilvFbayXKhjJZDA3luvaaVtGFT97eysKeh5sleEIcOXMFP7Gu0/jxctzmB2wkROj/nyfufEcnnpssqfLbRPRYGEAREREdERqnkHxURk3iyXsVD2MZl2cGO/OaItnFK/f28Ary0W8cqOI1e0KMo7guXPT+PgL53D90hymRgZzeehacHHT87NjuDw/BoeLHRDRHjAAIiIi6rJyzcODzTJuF7dRM4rxfAbzY4e/olvVM/jBnXUsLRfxzRtFbO7WkMs4uHZ+BosLc3jh4uCfJrZb9fCoXMMzj0/i8emRXleHiAbQYH8KEhER9bGdioe76zu4u1aCApjqwsIGu1UP33tzDUvLRXzr1ipKFQ8jWRcvXJzF4sIcrl2YOTbXwtnarcKo4j0XZgZ29IqIeo8BEBER0SHb3K3izuoOHmztwnUEUyO5Q70mTalSw7dvrWFpeQWv3V5DuWYwkc9gcWEOiwvzeO7cNLJdXkHuqBW3yxjPZ3DlzNSxCeiIqDcYABERER0CVcV6qYqbxW1slCrIZ1zMjh7ewgZbu1V88+YqlpZX8L0311EzipnRLH7tnSexuDCPK6cnu75sdi+EFzd9bDKPJx+bOJbPkYiOFgMgIiKiA/CM+gsbrGyjVPEwmnMxf0gLG6xtV/DqTf8aPT+8sw6jwImJPD78rlNYXJjDOx+fPNSRpX5T9QzWdypYmB/H+T6+CCsRDRYGQERERPtQqRk82NrFrRVrYYPxgy9s8GBrN1q57Sf3NqEATk8V8PLVs1hcmMM7To4fy0DAM4pyzUO5ZmBUIQBcR/DsmSnMTwzOdYmIqP8xACIiItqDnYqHe+s7uLtegiowUcgeeL7NvfUdLC0XsbS8gl88eAQAuDg3ik9cP4/FhTmcnz1eox9Vz6BcM6h6BqoKBZBxBFOjOZyezmIsn8FI1kUh6xyr501E/YEBEBERUQe2dqu4s7aDtzd2kXEFk4X9L2ygqrhdLOGVG37Qc6tYAgC84+Q4PvniBbx/YR6nj8ESz6qKqueP7FQ8E6UXsi6mR7OYKvjBTiHnIJ/hwgZEdDQYABERETURLmxwu7iNtVIVOdfB3Nj+FjZQVbzx4FE00nNvYxcC4OlTk/hHv3IJLy7M4eQAn+plVFGp+SM7NWMgABTAeD6DExN5TI1kUci5GMm6x26FOiIaLAyAiIiIEsKFDW4Xt7FdqWEku7/5PUYVP72/Gc3pebBVhiPAs2en8dGrZ/C+S3OYGct14Rl0V9p8HUcE44UM5sYLmBzJBqewucd6kQYiGkwMgIiIiAJVz+CXm7u4XSyh6hmM5TKYG9vbqIxnFK/f3cA3llfw6o0i1kpVZBzB1fPT+MQL53H90iwmB+ginlXPoFIzqHC+DhEdEwyAiIho6O1WPdzf2MFbqzswqpgsZDFZ6DxIqXoG339rHUvLK/jmjVVslWvIZxxcuzCDxYV5vHBxBqO5/v7KbTpfJ+NicjSD6UIOY/kM8lmHFyIlGnaq/h+sWwAQB3D6//Ohvz+NiYiIuuhRuYY7ayXcX99FxhFMFrIdn7K1W/Xw2u01LC0X8e1bq9ip+tcAun5xFosLc7h6fqZvAwXO1yHqgrSgQDXc2GSb1vdN3a/ZtnA/AxgTpJugDsb/s9OgQb4wPxJ5rH3DbdHxrO0w9bqJBNWw6joyA5x9/nBezy5iAERERENFVbGxU8Xt1RJWH1WQ3cPCBtvlGr59axVLy0W89uYaKjWDiUIGv/LEPBYvz+Hd56b7LmDgfB3qK8YA6lkdamBvwQFabFMrAAg66ybZiQ+DAyTyWcFAFCxY5UVpwX5hIJAMCkJpwUHDtmbCnyRsWt8mQCwIidIl2De8ESs9kTcsp2G/8LGbUnbyfoJXBaq7rZ5Y32AAREREQ8EYRXG7jNsrJTyqVFHIdLawweZOFd+8WcTSchHff2sdNaOYHc3hg08/hsWFOVw5PdU3gQPn61DXGc//08RteN+rBn8VwAS3UVrVz9OUtA4cwjzRtmSeYFtaUBAFBHY6rM5/InCwgwIn+FHDyTQpm++lQcMAiIiIjrWqZ/Bws4xbq9uo1Dpb2GB1uxJdo+f1uxswCpycyOM3nj2FxYV5PPX4BJwednr2Ml8nn2GwQwHVlOClVh+VMZ4VsIS3ZT+PV/UDGg0CDFXUAwqgPgdE/Dkg4vrzQcK/bAHIjfr3iXqMARARER1Lu1UPb2/s4q21EjzjL2wwkW++sMEvN3fxynIRSzeK+Mv7m1AAZ6ZH8LH3nMXiwjwWToz1JJBIztdB0O8cz2cwP5HHVCGDkWBkp99Ov6NDZgcqpmYFMqae5lWsP2vkxVT9PLFRk0QAIxIPWsT1Rz8cF3CzQVDDYHqoqdZH+qLAuOa3r+oOIIMRWgxGLYmIiDq0HS5ssLELR1ovbHBnreQHPctFvPHwEQDg0vwYPnH9PBYX5nB+dvRIg55wvk6lZuBZ83XGChmcDubrFLL+4gT9ctoddSicS2JqiVEYY50+VgFqwalj4W3U0azU564AiAcvQD2ACUZeHCuIyeYBGeHoSz8L24YXBBN2cGEHGV7itlU+r9LZfnstt9UEpst/Dbjyt47sZdsvBkBERDTwVBWbOzW8ubqNlUdlZF0XM6O5htPUVBW3iiUsLa9gabmIN1dLAIAnHxvHpxYv4sXLczg9PXIkda55/qhOOF8HANxgvs6pqQzGC/7iBPmMA4fBTu/Zoy+xW9M49yUccYndryYKFOtUMq0/dhwriAlGYNwCkBvj6Mt+hCNje+3kN+SrHCw4abW97dyoA3Ay/p+bDe5nATdxG27P5Ftvb1cOBBid787zOGQMgIiIqGdUFUb907yMqj9FwUpT49961vaaZ+AZRc0ovODv0W4NW+UaClkX8+OFhmP84sGjKOi5v7ELAfDM6Ul89lcv48XLczgx0X4xhIPwT2GLz9fJZxxMjWYxXchhNO+vwsb5Ol10qJP3m42+OPXAJRx9iTqW/bkkelcYD6jt+qdEhbfVHaC2U0+LTs3bZ3DSdHsiT2zU7BC52c6Cg0wOcMYS+XKdByUHypc52lE/Lxi5HAAMgIiIKFWnwUmYpqqoeYqaMbHgJApWVGFigYuBseZTJ6dTi3Xf3uCIBCu1CtzgvutIbEU3zyh+en8zWMigiJVHZbiO4NkzU3j56lm89/IsZkZzXXnNyvZ8nQDn6xzQgSfvBx1hTt6PMx5QK9cDEztIqe62vx/bzwp0vH12gsVJdPKzzTv92VEgf9jBQ4dlcS7UwGMARESdia53ADReq6GDtLCM1DR0kM++SJui4doOqRd8S6SpQWzpUscBEJwrH6ZLkBb9mmtPCg63J5ZPTS6FmrymQkOetGsqtMiT8kWrQUDi7SE48Yyi6hl4BvA0uDUGVa95cIJ6LSEQKLTj4MSxbyH+XGoR5F2BZOrbD0vNM/jR3Q0sLRfx6s0i1ktVZF3B1XMz+PvvPY/rl2YxUWi+CMJeDcR8naYXZmx2i9bbWu3bcO2VxEUZY9dSSV68MeXaLOEtJ+/7r0UsCEmOrDS7b9/uNt73ynuohADZESBT8G/D+7lxYOwEkBmJp7e6nxnx/1/sIMPJDNcoGfUUAyCiTjT78u8oDfHtDWnoLF+so5/S4bCDg4YLt2ljvmS9U68MnQgcml1zoWmafY67nSUtLdxN0/PFOi/JazuEBSSux2Bf36HhB99m/w/hc7bypAVsDZWPs4OPcDdPg/AhDE6g0X+lCYMZY2AMYGCNoChgVOK3wfNTBAGZ40IhUD/UgDiAwoFCYEQg4kDgQB0HIo4/N8YJbsWFK4KM4yIvDsR1/R/DrWBPk8EZBCrWc4+91n49YoGglScqS619ou11ntHomjaVmknc91DxFJWah52qwQ/urONbN1fxqFxDIevg2oVZvH9hDtcuzGA01+arruE9rJDE+6/mhcf0oMZAoHAdYKKQwenxDMbzGRQyDvKuwBEDYNf/q6r/1xAoJK68nhokaDxP6hXbk3lTrtZuv/4avNwdtuOG7ZJ4byTLj/LZ77tmAX0iT8N1V4KgZZAm76tpcupXmwClXf7aHi8u2RB4jPhziEbn/RGtMK3p/ZHE/QLg5gc7iCSyMAA6CK8KbL2NeGc1oA136o/TvnjsDlbb/K06Yk3Kbpo3We99lN1pve0ORWo5HZTRrC7dqLcCfjczpR4dderTvijaBQyanq9Z5z86TJvOv50v2SkNRz8c+zhpIxTHRxhghKMm/ltEYUSjgSU/WEE0cuIHJ/6IiYF/64WBjAfU1Pj3jb+vTYL/T/t/F4j/bwskepnDkRH/x2w/3VFARJEVIAf/vt9Rh1WaFehCAa2F4UuQJei8hu2/pvXtsTrXHwsERoGKB5SNoGyASk1RMUGaB1SMBLdA2ROUjaIabvP8fcoe/DTjp1U8je6H+9bL88vxmr39U4xlgRdPZ/Gr5wq4dtJBwS0BeARZvWUFHyZ4zfzgQGAHChLFBlXPoOYpquGPAgLkHMF0PoPxXAaFrItcxkHWdSCeANsKbKfVqsMgAUDq+7ghgE8LEpq9d4/f+/ZQqfFP/Wo1OtJwWlgiT+opYXsMVDIpQUd2FBidazOS0mK0JZMfnICReiP5g2ns1tT7P2p9pyji+6SdTqoGKEwe+dPZDwZAB1EtAW+/7k9ws6V+6TT5Imr6/dRsQ0r6Xr/k9lK/w6h30/p1UO8WpwC1LGNPr0mrMtiJaCYahAKi06L8gRONxaPh4zBPcjAlDDKiEDC4b4z6QYl1LD9YCbYroBqOltSPFZ15A43yG9QHuEzU2a138FsFJ2EeCfqgUXAi9XQHgkwwmiJdbDKqiqoJAwtFJbi1H5ebpNcfW/dNsE8U0KTvWz3gHOK8C+RcQc5N3hcUcsBURpBz/HR/e/DnIHqcD+5nXSDvKvKOlU8Up8b9bYCH6MtagtEmcazRKiuYUPFfg+AUttBIwcF4IYvxnIt8zkXedZF1+TnQE6r1EZCDjKCkTcLfiyhQSQQbIzNtRk9ajLAwUBlO3Qo+kqKR3pQfXqPFOjL+dseNL9wRrUBopTkZ/7jRqYqC+KnhQbnu4c+t7AYGQAdUczLQwkxDExQrpWGbtH7c99JGcpqN7iTTW43QNORNbG9VTsPx7bq1OU5DGcG2hlPF7FNLEP8wip2eAjQ/JQ2wT1/RsEMfnLrinx5Vf+zv6gFBPiDYx9R/wdbg9BeNyqzXWY3/WLVeB6MGEh43OBdfrfk0dl6oQhGvb9qHt4R1CX5dl9ipRNZrGOWNn4LnWCMXola5CE9F8l87iX7BV+s2mVZ/nSVRx+j/PO0UreADXO2gt8UpYH7g5p9eZjQcSxA/LRg1Mf4zharAgxPMz/HTjAq8MJ8KPOuxF+TxjKBmpXn2cWDVww/FkIMgG6QBYb3CP/95OyJwHAmCtfrjaEEBV+BkBG6Y5tTzuEF+1wkeOwJHHLgO4DoOXAlug21hPpF6fWOvq6CenvjBIf7/Uw9aVBz/v9wI4AWvgQiklOhIWO0FQbDsGQPP899f4asy4QoKGQc5V5BxgIwjcJA8HdS6b7+HY3ms41vtPfY47TY1b/g5Yn9uJD5DwnohrS5W+oHrYt+m1CXtc6/Za9fq2M2O2TD3pw03Xz9lyw5GClOdjZ40u89A5Xg47sGHPReuIY/9eNA6noePAdB+VUow/+46TKUcdKaA+pejfyNRo7cbvyaSNJ43er807hs11yYd+HoZaV8W8X1E09Nb1o0OndUl7CkNJv3HOp3i1B+LAHDiQUAYMERBggS/uFsLCoQd1ti8ESe49Y8bdeQl7JI6UHGsx/V0g3iaET/gUBGYoKwoAAnLQhiIOEHgEY4uGRij0UiSpwCMaVjxzA8aYQWr/l/Ypa8/i3pasuZhmiMa1AxwxZ+944qBI0AWioIADvzHDtT/rgv2c6DBaFN4P5z9E7w64nf4wzzJeiCsr92JtdNU/cDCC9LtgLEhiAw72VFoNcQSwVtiLlT43olGnaLOinU/6pgA0QIcQCxQROJ91fK2ozyOdcxEvVLrm1KXML2TunRSN+uzJ6qLk+l8rsqwLTU9aI48+Ejbtpfgw63nZfBx7DAA2i/HRe3CB7BVvI9M3r5oXvilEG/gmpqefBNI7FYlnq6xPI3H0/DDIZGvfmxrH63XJSXEiu4qGstLL9OuZ3odY/toYlvDc21yPCDlw6NeR43VSer9t2b/H1aZDa9v9EEW3re/yP1Taow6Qec77GyHv/7XO+xe0PlW9YMF/9d9u2Mu8NQJJrY78AB4GnbWHXgIRgc0TPfLr0UjBv4ogacCz4QjDQpPnWD0IMgb5QM849ejpuHxw9XDEEy0D669YpJp4TVZ6o/9lcTsFcgSZVj5wu390mV2JH5KVv0ULP+UrHzGn/sRnq6VDW4b8qY8rueL75Nz0HZFMINwzGtANARGJviRpfEX/uhTx97HBKdNBvOowpE7Y416hp0iP58X9G/8/dUoTNBhVwhyrmC0kMVoNoNCLotsxkXOdSBOkw59atDRYSBBNAiaBR9NRzBTgo9IWrsPvtgZfNCAYAC0Tzsmg+d/9DEYr4amy7i2eZ+1exu23d72fdw6w0HLP+jHSD+Xr7A77PGOfdih73eOxP9c8Zfo9W/9UQU33O6Ilad+W88PZJ1gW3Cqk5OSN3zsOvaxJTW/GxwzvX5hnsYy4tulsVxJlOvU011BLIjJ9Gpp4h5Sqy9jgjv2HKwwLeoLQWPtXaMANlwO25pPZf24Ef6gUD8dWKJ9bIKwXyJwXdRPxYMATv3/0w3yOI4Ec/7D0/T8NQAyroNc1uF8Heo/yUCj4VTGtOAjOUoSCn+Is0dDogM1HjvMEy4Lbl/jyAlPrbKCjShPEIiEj1sGH82CDQYf1L8YAO2T4wAvv/sENh7cQbYw2rC92Q8g0fY25bftX7ctv3WGtsc/YAe/6+V3+/VFY4c63qmPd8zine20YEJSOuSNHX67jMagwSrXSQ887FteTb736gMXjYs8AHYAgmDwxFo2G2Fa/f0cCzaio7RP0+AgfrChUZuRoB2L1q/RI46/vLPADzDDEMYONlzX8edyBRGPINg3PGawvwMBJJyhpNbCEeFi3drYJ4qd4mvfT95NRGUAUEMwLyj+aqSNVMe3p7xXUkbT08tMK6dVeR0cu9UZA3xf701yyf+04CM1zR7RDIONlgeyAhLrlwCgdfDhZOojILE5H82CDzuYaBVs2KMhDD6IkhgA7VM+4+JzH7yEW9+9ifFCqdfV6U9d/8A9qmGY4Hm0jdok+LdNPtlbeU2fpzbflLZX+Fis46bv3li/tIBa29Uv3KrJfCllKTprL2odNwwemh1f4sdN/lDqByJ+R8VEHZ3G2tW79UHHRqxgI+jzRCMk1hCIBNkdxw3m8fgjbYAfbIRBg3+RUMAJggo/TeqjHRKOkkg0WgI7LQwqomAiyOdI9FuxRGXa87WswsJnFHuMeEcr9romO1SSkrddeZKSlnaMRHkNaUDDeyrstNq/nttzmpK/ukfszm+ijLRf2mOn/qUcxy4nXIbQ3pZ27GQdFfG0hjpbr1kyvW1aoqPeMq3hgPV8+zp2s8M1+zxJ1CFWVovPIDuwcKwAJLo4aiL4CAOS2OlZaSMZzYKNREDiOM3rRkQ9wwDoIHLjWJ27ip20i+xp8mHKB3RDnvY08eWRuk8H5drltP1hC82+EiX2vFLzJL7vJC1X8seyRI6070wkj93B96qkF9R6J9gd4GSdGiOQps8/6idIw/+hfcjoSGkvZixR4+UnctUr1PgLe9iRbig9pX+RzCexeWb14zXkS/nBMXlUCSOIZFmp+6Xla3wWTlrbkuTD+gpn/gpm4QpoQRACQMTxRzuCQMR/Pk7U33bC7UHnJsoLPy0MSlJHBI4yjb/6Hm/2mz8tGNhzmpV+kLSOjrOX+iSCj7anWjH4IKLWGAAdQD7r4tTJE8HCJJLScUs8TumLRB2laJ+UctI6oslOaCJP03LEPlaKNp3WsJwWu6TXLzVP+2Ol/ejXJktqx7jd/0Unz7OZ9DqldfZb18nP177uTctjZ5douNjveb7/iYg6xgDoAPIZF089PhhXvCUiIiIiIn8+KxERERER0VBgAEREREREREODARAREREREQ0NBkBERERERDQ0GAAREREREdHQ6GoAJCIfEpGficgbIvL5lO0iIl8Itv9QRN7TzfoQEREREdFw61oAJCIugC8CeAnAMwA+ISLPJLK9BOCJ4O+3AfxBt+pDRERERETUzRGg6wDeUNUbqloB8McAPpLI8xEAf6S+VwFMi8ipLtaJiIiIiIiGWDcDoDMA3rIe3wnS9poHIvLbIvIdEfnOw4cPD72iREREREQ0HLoZAElKmu4jD1T1y6r6vKo+f+LEiUOpHBERERERDZ9uBkB3AJyzHp8FcG8feYiIiIiIiA5FNwOgbwN4QkQuiUgOwMcBfC2R52sAPhmsBvc+ABuqer+LdSIiIiIioiGW6VbBqloTkd8F8OcAXAB/qKo/FpHfCbZ/CcCfAfgwgDcAlAB8ulv1ISIiIiIi6loABACq+mfwgxw77UvWfQXwT7tZByIiIiIiolBXL4RKRERERETUT8QfhBkcIvIQwDqAjX3sPrWH/TrN2y5fu+3zAFY6rFO/28vr2+/HPWiZ+92/F220XR620f487mGUuZ8y9rrPQdtfp3nYTvvzuMP0Wco2OpjHHYTPUn7f790UgGlVTV8+WlUH7g/Al7u9X6d52+XrYPt3ev169vr/pR+Pe9AyB6mNtsvDNtqfxz2MMvdTxl73OWj76zQP22l/HneYPkvZRgfzuIPwWcrv+8P/PxnUU+C+fgT7dZq3Xb791nUQ9eq5duO4By1zkNroXo87yNhGD17GXvc5rPY3LG0UYDs9jP35fd9dbKMHL4Pf993V8nkO3Clwx42IfEdVn+91PYiaYRulQcB2Sv2ObZT63TC10UEdATpOvtzrChC1wTZKg4DtlPod2yj1u6FpoxwBIiIiIiKiocERICIiIiIiGhoMgIiIiIiIaGgwACIiIiIioqHBAIiIiIiIiIYGA6A+JiIfFZH/ICL/U0R+vdf1IUoSkcsi8h9F5Ku9rgtRSETGROQ/BZ+fv9Xr+hCl4ecn9bvj3A9lANQlIvKHIvJARF5PpH9IRH4mIm+IyOdblaGq/0NVPwvgUwD+bherS0PokNroDVX9THdrSrTn9voygK8Gn59/88grS0NrL+2Un5/UC3tso8e2H8oAqHu+AuBDdoKIuAC+COAlAM8A+ISIPCMi7xKRP038nbR2/RfBfkSH6Ss4vDZK1G1fQYftFcBZAG8F2bwjrCPRV9B5OyXqha9g72302PVDM72uwHGlqn8hIhcTydcBvKGqNwBARP4YwEdU9V8B+I1kGSIiAH4fwP9W1e92t8Y0bA6jjRIdlb20VwB34AdB3wd/6KMjtMd2+pOjrR3R3tqoiPwUx7Qfyi+Go3UG9V8lAf9L+kyL/L8H4IMAflNEfqebFSMK7KmNisiciHwJwFUR+efdrhxRQrP2+t8BfExE/gDA13tRMSJLajvl5yf1kWafpce2H8oRoKMlKWnaLLOqfgHAF7pXHaIGe22jRQDH6kORBkpqe1XVbQCfPurKEDXRrJ3y85P6RbM2emz7oRwBOlp3AJyzHp8FcK9HdSFKwzZKg4TtlQYB2yn1u6FrowyAjta3ATwhIpdEJAfg4wC+1uM6EdnYRmmQsL3SIGA7pX43dG2UAVCXiMh/AfAKgKdE5I6IfEZVawB+F8CfA/gpgP+qqj/uZT1peLGN0iBhe6VBwHZK/Y5t1CeqTU/vJyIiIiIiOlY4AkREREREREODARAREREREQ0NBkBERERERDQ0GAAREREREdHQYABERERERERDgwEQERERERENDQZARETUl0RkWkT+SXD/tIh8tdd1IiKiwcfrABERUV8SkYsA/lRVr/S4KkREdIxkel0BIiKiJn4fwIKIfB/ALwA8rapXRORTAD4KwAVwBcC/AZAD8A8AlAF8WFVXRWQBwBcBnABQAvBZVf3Lo38aRETUT3gKHBER9avPA1hW1ecAfC6x7QqAvwfgOoB/CaCkqlcBvALgk0GeLwP4PVW9BuCfAfj3R1JrIiLqaxwBIiKiQfR/VXULwJaIbAD4epD+IwDPisg4gEUA/01Ewn3yR19NIiLqNwyAiIhoEJWt+8Z6bOB/tzkA1oPRIyIioghPgSMion61BWBiPzuq6iaAmyLytwFAfO8+zMoREdFgYgBERER9SVWLAL4hIq8D+Nf7KOK3AHxGRH4A4McAPnKY9SMiosHEZbCJiIiIiGhocASIiIiIiIiGBgMgIiIiIiIaGgyAiIiIiIhoaDAAIiIiIiJSVo5JAAAAJElEQVSiocEAiIiIiIiIhgYDICIiIiIiGhoMgIiIiIiIaGj8f8WlNRhhV7AOAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "#SK483_dose_PCB & SK483_dose_BV\n", "plt.figure(figsize=(14,7))\n", "plt.rcParams['pdf.fonttype'] = 42\n", "sns.lineplot(data=df[(df[\"strain\"]==\"SK483\")&(df[\"condition\"]==\"dose\")&(df[\"chromophore\"]==\"PCB\")], x=\"time\", y='ratio', ci=\"sd\")\n", "sns.lineplot(data=df[(df[\"strain\"]==\"SK483\")&(df[\"condition\"]==\"dose\")&(df[\"chromophore\"]==\"-BV\")], x=\"time\", y='ratio', ci=\"sd\")\n", "plt.xscale(\"log\")\n", "#plt.savefig(\"20211005-SK483-dose-response-1.pdf\")" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0AAAAGpCAYAAACkt1YhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd5Ak6Xnf+e+brqqyqrqr7Xi/FgtggcVgsQuRgiFAQCBFShQlwYgudIfjUbzjMYIyId2dIu7+UYTiIo4RooKBUDDgAZIiTgAIJ5IgQRJrZ+EW43bH9UxPe1++KjPf+yOrq7vHrJ2e7ur+fSI2ujurejbHdFU++T7v7zHWWkRERERERHYDZ6tPQERERERE5G5RASQiIiIiIruGCiAREREREdk1VACJiIiIiMiuoQJIRERERER2DW+rT+DVGh4etkePHt3q0xARERERkW3queeem7PWjtzqsZ4rgI4ePcqpU6e2+jRERERERGSbMsaM3e6xTW2BM8Z80Bhz3hhzwRjzb27xeL8x5qvGmB8aY04bY35tM89HRERERER2t00rgIwxLvB7wN8D3gB8xBjzhhue9i+AM9bah4F3A/+PMSbYrHMSEREREZHdbTNXgB4FLlhrL1lrW8AXgZ+/4TkWKBpjDFAAFoBoE89JRERERER2sc0sgA4A19Z9Pd45tt5/Ah4EJoDngd+y1iY3/kLGmI8bY04ZY07Nzs5u1vmKiIiIiMgOt5kFkLnFMXvD1x8AfgDsB94C/CdjTN9N32TtJ6y1J621J0dGbhnmICIiIiIi8rI2swAaBw6t+/og6UrPer8GfMmmLgCXgQc28ZxERERERGQX28wC6FngXmPMsU6wwYeBr9zwnKvATwEYY/YA9wOXNvGcRERERERkF9u0OUDW2sgY85vAtwAX+ANr7WljzK93Hv994P8GPmmMeZ60Ze5fW2vnNuucRERERERkd9vUQajW2q8DX7/h2O+v+3wC+OnNPAcREREREZFVmzoIVUREREREZDtRASQiIiIiIruGCiAREREREdk1VACJiIiIiMiuoQJIRERERER2DRVAIiIiIiKya6gAEhHpAVGcsFRr0WjHW30qIiIiPW1T5wCJiMjrV2lGnJlYptqMcQwEnsNgPmAgH5APPHK+i+OYrT5NERGRnqACSERkm7LWMrXc4NxUmTBwGS5kgHQ1aKHSZnK5gQEcY+gPfYbyAYWsTxi4+K4W+EVERG5FBZCIyDbUihIuzJSZXmlSyvl46woaz3UouA6Fzkt4Yi31VsylWpXEWixQyHgM5gP6cz75jEfWd7fodyIiIrK9qAASEdlmluttzkwsE8W2u+rzUhxjCAOPMFg71ooSJpYaXF2oYUiLpqF8wEDok8/6hGqbExGRXUoFkIjINpEklutLdV6cKVPM+BQyr33VJvAcAm9t1SiKExZrbaZWGmDBcQz9OY/BfIa+rE+YUduciIjsDiqARES2gUY75vxUmYVak8Ewg3uHV2e6bXOZtba5Zjvh8myVBAtAPnAZzGcohWnbXMZzMEarRCIisrOoABIR2WKL1RanJ5YxxjCcz96V/6djDLnAJResrTK1ooTJ5QbXFmsYDJ5rGMj7DIUBYcYjDLw7XpiJiIjcbSqARES2SJxYxuarXJ6r0p/zyXhbG1RwY9tcnFiWaxEzK00gLZr6ch5D+QzFbFoQrX++iIhIL1ABJCKyBeqtmDOTy6zUI4YLGZxt2GrmOoZCxuu2zVlraUYJl+eqWGtJgLzvMlgIKIXpTKKsr7Y5ERHZ3lQAiYjcZTMrDc5NreA77itKedsujDFkfXdDpHY7TphebjK+WAfAcxwG8z6D+YC82uZERGQbUgEkInKXRHHCpbkK44sNSjl/R6Su+a6Dn9vYNrdSj5gpp21zhtW2uYC+nE8ucLe81U9ERHY3FUAiIndBpRlxZmKZeitmOB/s2DYx1zHkMx75G9rmrszXsJ0hrVnfTWcS5QPCwCXnuzv2z0NERLYfFUAiIpvIWsvUcoPz02VyfhozvZvcrm1uttzk+lIdQzqTaDAM0ra5rEdebXMiIrKJVACJiGySVpRwYabM1EqDgVyAtwNa3u4E33U2tP/FiaXSjJirNDsTiaCY9RnutM2FGbXNiYjInaMCSERkEyzX25yZWCaKLSOFuzPbp1e5jiEM0sAEWGubu7pQI7ZpSZT10rS5gTAgn1HbnIiIvHYqgERE7qAksVxfqvPiTJlC4FMItXLxat2ubW6u3GRiXdtcKQwYCgMKOY/Qd7XCJiIir4gKIBGRO6TRjjk/VWah1mQwzGgfyx10q7a5WjNisdoisRZjoBD4DBU6bXPBxgJKRERklQogEZE7YLHa4vTEMsYYhvNqedtsa21z6dfWWlpxwvhinXi+igUynsNgJ20uH3jkfBdHRamIyK6nAkhE5HWIE8vYfJXLc1X6c742628RYwwZb2NYQhQnLFTaTC43AHCNoT/0GcoHFLI++UBtcyIiu5EKIBGR16jeijk7ucxyPWK4kMHRpvxtxXMdCq5DofNWl1hLvRVzsVYl6YQrFDIeQ4WA/lygtjkRkV1CBZCIyGswW25wdnIFz3EYLuyu2T69yjEb2+YAmlHM9cUGY/M1DOleo8F8OpMozKThCmqbExHZWVQAiYi8ClGccGmuwvhig1LO37AxX3rPrdrmFqttplfStjljDP25NFyhmElnEunvXESkt6kAEhF5hSrNiLMTy9RaMcP5QHNodqDVtjnWtc012wmXZ9O2uQQoZjwGwoBS6JPPeGQ8R/8WRER6iAogEZGXYa1larnB+ekyOd9lMK+Wt93CMYZc4JIL1laJWlHC5HKDa4s1sOB30uYGQ5981lfbnIjINqcCSETkJbSihAszZaZWGgzkAqWGCYHnEHgbZxIt1dba5hxj6M95DOYz9GV9coG74fkiIrK1VACJiNzGcr3NmYllotgynM+ozUluyXUMhYxHIXNz25zFYoHQdxksBJTCdCZR1lfbnIjIVlEBJCJyA2st44t1XpwpUwh8CqGikeWVu13b3PRyk/HFOgaD6xgGCz6DYUA+4xEGHq7a5kRE7goVQCIi6zTaMS9Ml5mrNBkMM7oolTviVm1zK7WImZUmAAZDX85juJChmE0LIrXNiYhsDhVAIiIdi9UWpyeXMRhGCtmtPh3ZwVzHkM945Dttc9ZamlHC5bm1Ia0532VIbXMiInfcphZAxpgPAr8LuMB/sdb+hxse/5fAx9ady4PAiLV2YTPPS0RkvTixXF2ocmm2Sn/O3zAXRuRuMMaQ9V2y/tq/vXacts1dW6jjmLRoGggDhgrpkNa82uZERF6TTSuAjDEu8HvA+4Fx4FljzFestWdWn2Ot/Y/Af+w8/+8Dv63iR0Tupnor5uzkMsv1iOFCBkd32GWb8F0HP7exba7ciJirNLGdY305n+F8QDGbDmlV8S4i8vI2cwXoUeCCtfYSgDHmi8DPA2du8/yPAF/YxPMREdlgttzg7OQKnuMwXNBsH9nebtc2NzZfS4e0WsgFLoP5gIEwIJ9xyfmu2uZERG6wmQXQAeDauq/HgXfc6onGmBD4IPCbt3n848DHAQ4fPnxnz1JEdp0oTrg0V+HaQp2BMMDXbB/pQbdrm5srN5lYqoMF103b5gZCn3zGIxdolUhEZDMLoFvdcrK3OAbw94Hv3q79zVr7CeATACdPnrzdryEi8rIqzYhzEytUWxEjBc32kZ3Fd50NBX2cWKrNiIVKC0u6SpT1HfrDNII7F3iEgaubACKyq2xmATQOHFr39UFg4jbP/TBqfxORTWStZWq5wfnpMlnPZTCvljfZ+VzHEAYeYbB2LIoTlmsRsytre4lyvstAPqAU+uR8V3OJRGRH28wC6FngXmPMMeA6aZHz0RufZIzpB94F/LNNPBcR2cVaUcKFmTJTKw0GcgGe7nbLLua5DgXXgczaJUA7Tpgvt9LWuY5CxqMU+vTnAsIg3U/kqCgSkR1g0woga21kjPlN4FukMdh/YK09bYz59c7jv9956j8E/ru1trpZ5yIiu9dKo83p68u0Y8twXi1vIrey2jpXYC1godWJ4R5frGNI9xwVsh6DYdAd1qrZRCLSi4y1vbWl5uTJk/bUqVNbfRoiss1ZaxlfrHNhpkI+SDd/i8hrt5o614wSoiTBAI5j6Mv6DOYDCp2QhfWhDCIiW8UY85y19uStHtvUQagiIluh0Y55cabMbLnJYJjRXgaRO+BWqXOJtTTbCZfnqiTWYkhb7Eo5n1LoU8j45AKXwFPbqYhsHyqARGRHWay2OD25jMEwUshu9emI7GiOMeQCd8MKa5xYKs2I+WoLay0WyHgOA2EashBmPHK+kudEZOuoABKRHSFJLGMLVS7P1ejLepp1IrJFbpU8144TFmttplYa3WNhJ3muP/QJg7Qo0mqtiNwNKoBEpOfVWzHnplZYqrUZygc42pQtsq10QxZuSJ6bLTe53kmeM5i15LnQJwxcsp6S50TkzlMBJCI9bbbc4OzkCp7jMFzQbB+RXnHj0NbV5LnJ5QbXFmvd5Lm+nMdALqCYS2cUKXlORF4vFUAi0pOiOOHSXIVrC3UGwkD7CUR6nDGGjOduaF9NrKUVJVxdqBFbi8HgOFAKA0o5n2LWuymYQUTk5agAEpGeU21GnJ1YodqKGCloto/ITuXcInkuTiy1ZsRipYUlDVnwXYeB0KeUC8hn0/1ESp4TkdtRASQiPcNay/Ryg3PTZbKey2BeLW8iu82tQhbixLJSj5irpMlzCZDz3U5R5JPLeIS+i6eVYhFBBZCI9IhWlHBxtsLUcp1SLtCFjIh0uY4hn/HIrzvWjhMWKm0ml9eS5/KBm7bPhUEa363kOZFdSQWQiGx7K402Z64v04otQ3m1vInIy+smz6271GlFCTMrneQ5m+47KmQ9BkKf/pzfLYr0GiOys6kAEpFty1rL+GKdCzMV8oHHQKiNziLy2gWes2FvkLWWZpQwsdTg6kINbLqa1JfzGAgDCtk0jjvjKXlOZCdRASQi21IzinlhusxsuclgmFGbiojcceYWIQuJtTTbCWPzNRJrsRY819AfBgyGPvmMRy5wNWxZpIepABKRbWep1uLHE8sYDCOF7FafjojsIo4xaStccOvkuQQLQMZz6A99BsOAXOARBq7i+EV6hAogEdk2ksQytlDl8lyNvqynO6wisi3cKnkuihNWahGzK81OSdRJnssH9Gc9wkwax63AFpHtRwWQiGwL9VbMuakVlutthvIBjvrtRWQb81wHz3XIZ9Yupdpxwny5xcRSvXuskPEohT79uYCwE7LgqKVXZEupABKRLTdbbnBusozrGIY020dEetSNyXPWWlpxwvRyk/HFOoa15LnBMKCY9QgDj6yvkAWRu0kFkIhsmShOuDJXZWyhxkAYqH9eRHYUYwwZb2Ngwmry3PhinShJMKT7jvpyPoP5gEI3ZEFFkchmUQEkIlui2ow4O7FCtRUxUtBsHxHZHV4qee7yXJXEWgzgOg4DoU8p9Clk0hlF6yO8ReS1UwEkIneVtZbp5QbnpstkPZdBtbyJyC53u+S5SjNivtrCWoslTZ4bCANKod8NWdDKucirpwJIRO6adpxwYabC1HKdUi5QOtIrZK3l9MQKibUcKOUYzAdaMRPZ4W6XPLdYazO10gDAAnnfpZTvFEVBWhRpbprIS1MBJCJ3xUqjzZmJFVpRwlBeLW+v1OmJZT715BhnJ1e6xzKew4FSjv2l3IaPB0o5Clm9rIvsVJ7rUHAdCjckz82VmxuS54qZtHWuP/TJ+UqeE7mR3ilFZFNZa7m+VOfF6Qr5wGNg/e1Mua2x+SqffnKMZ64sMBgG/Ma7T7C/P8f1pTrXl+pMLNW5OFvhiYtzJHbt+/qy3i2Lo32lrOYqiexAq8lzq1aT5yaXG1xbrHWT5/pyHqVcQF8uLYqUPCe7mQogEdk0zSjmhekys+Umg2FGbRmvwEy5weefvspfnp8h57v88mNH+PsP7+9umH74UGnD89txwvRKg4lOYXR9Kf38+9eW+ItzMxueO1LMrCuKst3iaLSY1d+NyA5xq+S5xFpaUcK1hRqxTe+YuI6hP+cz0InjvjGYQWQnUwEkIptiqdbixxPLYGGkkN3q09n2Vupt/vi5cb72/AQAP/fwAf7x2w7Sl/Nf8vt81+HgQMjBgfCmx+qtmInl+rriKP38O+dnqLbi7vM8x7C3P3vLlaOB0NddYpEe59wieS5OLPVWzFKt2g1Z8N1O8lwuIN+J41bynOxEKoBE5I5KEsvYQpXLczWKGU93FF9Gox3z1R9O8CffG6fWinnvA6N89B2HGS2+/qIxF7icGClwYqSw4bi1lpVGlBZEixuLo+9dXaQdr/XU5XyX/aWbi6P9pdyGfQgi0ltuFbIQJ5aVesRcJU2eS0hfA0o5n4HQJ5fxCH1XATbS8/TuJSJ3TL0Vc25qheV6m6F8gKOVg9uKE8ufnZnmC89cZaHW4tGjg/zy40c4MpTf9P+3MWnrS3/O5w37+jY8lljLXLnZLYhW2+pemK7wtxc27jcq5fwbVozStrp9/TndNRbpQa5jyGc81r8KteOExepa8hxAPnAphQGlMEjju5U8Jz3GWGtf/lnbyMmTJ+2pU6e2+jRE5Aaz5QbnJsu4jqGYfem2rd3MWssTF+f5zFNjXF+q8+DeIr/yzqM8tL9/q0/tZbXjhKnlxg3FUfr5Yq3dfZ5hbb/RhpWjgRwjBe0FE+l1rSihGcW04gRselOlkPUYCH36cj5h4JL1lDwnW8sY85y19uStHtMKkIi8LlGccGWuythCjYEw0FC+l/D8+BKffPIKL0xXODQY8r//zIM8enSwZ/bY+K7DocGQQ4M37zeqtSImlm4ujr59fobaDfuN9nVWi25sqyvltN9IpBcEnrNhlddaSzNKmFhqcHWhBjZdTSrmPAbDgEI2LYoynpLnZHtQASQir1m1GXF2YoVKK2KkoNk+t3N5rsKnnhzjubFFhgsBv/Xee3nPA6M7aiUkDDzuGS1wz+jN+42W6u1uUbS+re7UlUWidT11YeBumGm0VhxlCQO9XYlsV+YWIQuJtTTbCWPzafKcweA60B8GDIQ+hU7IguL5ZSvoHUVEXjVrLdPLDc5Nl8l6LkP5zFaf0rY0tdLgc0+P8Z3zs+QzHr/2zqP8zJv37ao3fGMMA2HAQBjc1OYXJ5bZSrMbxLBaHJ2dXOGvX5hlfYP2QOjfsjja25/VqqPINuQYk+4PCjYmz9WaEYuVFknnJzxwHUp5n4FcQJjxCANXP9Oy6VQAicir0o4TLsxUmFquU8oFSgO6heV6mz86dY2vPz+JYwz/6JGD/KO3HVRq2g1cx7C3L8veviyPHBnY8FgrSpjsRnivzTl65vICS/W1/UaOgdFithvCsL44Gi5mFMQhso3cKnkuihNWahGzK83uTY+s7zKYD+jPeoQZj5yS5+QO07uxiLxiK402ZyZWaEUJQ3m1vN2o3or58g+v86XvXacZxbz/wT185NHDDBW0QvZqBZ7DkaH8LVPxKs2IiXUrRutXjurttf1GvmvY35/buHI0kH7sy3r69yuyDXiug+c65NfdIGrHCfPlFhNLdQCMgXzgUQp9+nMBYSd5TiEL8lqpABKRl2Wt5fpSnRenK+QDj4H1t++Edpzw309P8cVT11iqtXn8+BC/9PgRDt1iOKm8foWMx317ity3p7jhuLWWxVp7Q1E0sVTn2mKNZ68sbNhvlM+4G1aLuvON+nMbWnZE5O7zXQffdSh0LlOttbRjy/Ryk2uLNRwMkIYsDIQ+fVmfMPDI+gpZkFdGMdgi8pKaUcwL02Xmyi0GwmBHbdx/vRJr+e6FOT7z1BiTyw0e2t/Hr77zKA/s7Xv5b5a7Kk4sM+X1KXVrbXWz5eaG5w7mgw2zjVY/39On/UYi28Vq8lwzSoiSBEO676ivM7S1mPU7IQsqinYrxWCLyGuyVGvx44llsDCsNq4NfnBtiU8+cZmLs1WODoX8+599A287MqA32m3KdQz7+tMhrRzZ+FijHd8032hiqc6TF+dYaUTd5zkG9vRlb7lyNFTQ4F+Ru+mlkueuzNdYvcHvOg4DoU8p9ClkfLKBs6uCaOTWVACJyE2SxHJ1ocqluRrFjLfhDWa3uzBT4VNPXuEH15YYLWb47ffdx7vuG9HKWA/L+i5Hh/McHb55v1G50b5pvtHEUp3nry/TjJLu8wLPYX//rYujvpwGA4vcDbdLnqs0I+arLay1JBayvkOpE8e9GrKg1d3dRQWQiGzQaMecnVxhud5mKK+72qsmlup89ukx/ubFOYpZj//hJ47xoTft05vmDlfM+ty/1+f+vTfvN1qotroDX1eLoyvzNZ66vEC8br9RMeOtzTQaWC2Osuzrz+nmgsgmu13y3FKtzfRKAwAL5H2XUj6gFPrkfJcw8HRjawfb1D1AxpgPAr8LuMB/sdb+h1s8593A/wv4wJy19l0v9WtqD5DI5pkrNzg7We72UQssVlt88dQ1vnV6Cs8x/IO3HOAfvvXAhsQikfWiOGGm3LypOJpYqjNXaW147nAhWDfwdW3laLSYUeyvyF3UjhMa7Zh2nHTjuIsZn/7QoxQG5Hwlz/WaLdkDZIxxgd8D3g+MA88aY75irT2z7jkl4D8DH7TWXjXGjG7W+YjI7UVxwpW5KmMLNUq5gMDThVetFfGl71/nyz+4Tju2/PQb9vCRtx9mIK8EPHlpnuukiXKlHG+/4bFGO2ZyOQ1huL5U7w6B/ZsX56g01/Ybrc5I2l+6ua1uMB9or5nIHbaaPLfKWksrTphabjK+mMZxO8ZQzKZJqH25dKVIyXO9aTNvYT4KXLDWXgIwxnwR+HngzLrnfBT4krX2KoC1dmYTz0dEbqHajDg7sUKlFTFS0GyfdpzwjR9P8ofPXmOlEfET9wzzS48dYX8pt9WnJjtA1nc5Nlzg2HDhpsdW6u3uatH6laMfji/TWrffKOM5G4qi9cVRIauVSZE7wRhDxnM3BCYk1tKKEq4t1Ii7IQuG/pzPQBhQyHjkAletrT1gM18pDwDX1n09DrzjhufcB/jGmL8CisDvWms/feMvZIz5OPBxgMOHD2/KyYrsNtZappcbnJsuk/VchvK7O+UtsZbvvDDLZ58aY6bc5OGD/fzK40e594ZZMyKbpS/n05fzeWDfxhj1xFrmK62biqOLsxWeuDjHuu1G9GW9m4qjI0Mh+0s57ecTeZ2cWyTPxYml3opZqlWx1mJJV5NKnaIo3ymK1FmxvWxmAXSrV9obNxx5wNuAnwJywJPGmKestS9s+CZrPwF8AtI9QJtwriK7SjtOuDBTYXKpTikMdvVGfmstz11d5FNPXOHKfI3jI3l+8z338NbDA1t9aiJAetE1UswwUszw8KHShsfaccL0SmNdcZR+/v1rS/zFubWmiqzvcGwoz/GRAidG0o+HB8Nd/bMvcifcKmQhTizlRpo8l3SKopznUgrTGUW5jEfou9rnt4U2swAaBw6t+/ogMHGL58xZa6tA1Rjz18DDwAuIyKZYabQ5M7FCK0oY3uUtb+enynzyicv8eGKFvX1Z/uVP389P3DusO+XSM3zX4eBAyMGB8KbHaq2IiaUGV+aqXJyrcGm2yrfPzfC152MAPMdweCjkxHCB4yN5TowUODqU3xAhLCKvnusY8hmP9cH67ThhsdpmqpM8B5APXEphQH/oEwZpHLeS5+6OTUuBM8Z4pIXMTwHXgWeBj1prT697zoPAfwI+AATAM8CHrbU/vt2vqxQ4kdfGWsv1pTovTlcIgzTic7caX6zx6SfHePLSPKWcz4fffoiffmiv7obLjpdYy+RSg0tzFS7OVrg4W+XSbKU78NUA+0s5TnQKouMjBY4P55UKKbIJWlFCM4ppxQnYdN9RIeMxkE/bYcPAJespee612pIUOGttZIz5TeBbpDHYf2CtPW2M+fXO479vrT1rjPkm8CMgIY3Kvm3xIyKvTTOKeWG6zGy5xWAY7No7TPOVJl945ip/dnaajOfy0UcP8w/eckB3vGXXcIzhwECOAwM5fvLeESC9OTJXaXGps0p0cbbCmckyf/3iXPf7RooZjg+nRdFqC92Q0uhEXpfAczbsDbLW0owSJpYajM3XcEwneS7nMRgGFLJpUZTxlDz3em3qHKDNoBUgkVdnqdbixxPLYKE/tzsjnCvNiD95bpyv/GiCJLH8vTfu5Z+cPEQp3J1/HiKvxHK9zeW5tCC61Fktmliqdzfz9mW97irRiZE8x4cL7Ctl1UIqcgcl1tJspytFsbUYDI4DpTCglPMpZtOQhfVpdZLakhUgEdlaSWK5tlDj4myFYtbflbGcrSjhT380wR8/N061GfGu+0b42DuOsLc/u9WnJrLt9ed83nKoxFvWBS/UWzGX59O2udXVoi//4DpRJ4ou57scG8539xSdGMlzaCDUZm+R18gxhlzgbuhUiBNLrRmxWGmxOrbVdx0G8j4DuYAw4xEGrtq6X4JWgER2oEY75uzkCsv1NqXc7mt5ixPLX56b4XPPXGWu0uSRwwP8yuNHOD5y8+wVEXl92nHC1c7NlkudPUWX56s02unsIs8xHB1Ki6LjIwVODOc5OpzflTdlRDZLFCc0O3uKII1dzvoug/mA/qxHmElDFnbTzYiXWgFSASSyw8yVG5ydLOMYs+s2LltreebKAp9+coyrCzXuHS3wq+88ypsPll7+m0XkjokTy8RyvVsQrRZH5WYatuAYOFDKbYjlPjFc0CBXkTuoHSdp+1wcd48VMh6l0Kc/FxAGLjl/54YsqAAS2QXixHJ5tsLYQo1SLth1Q9fOTK7wySeucHZyhQOlHL/02BHeeWJIG0VFtglrLbOVZjd5brWFbr7a6j5ntJjp7CtK9xSdGMkzqLAFkTvCWks7tjTaMa0kxsEAacjCQOjTl/XTdjvf3RE/c9oDJLLDVZsRZydWqLQiRnbZbJ+x+SqfeWqMpy8vMBgG/Ma7T/D+B/fsqmV+kV5gjGG0mGW0mOXx40Pd48v1dneFaDVw4clL893HSzm/u6doNZZ7b7/CFkReLWMMgWc6N0jTDpHV5Lnriw3GkhoGus4y978AACAASURBVB0kA6FPsVMU7bTkOa0AifQway0zK03OTq2Q8VwKmd1zT2O23OTzz4zx7XMzZH2Xf/TIQX7u4f3aVyCyA9RaUSeBrrNaNFfl6kKNuBO2EAZp2MKJTkF0YqTAwYGcbnyI3AGryXONKMZai7XguYZSGDAQ+hQyPtnA2fbJc1oBEtmB2nHChZkKk0t1SmGwa9Jeyo02f/zcOH/6owmshZ97eD//+G2Hdt1+J5GdLAw8Htrfz0P7+7vHWtFa2MLqitE3T0/RitKwBd81HBlaN6touMDR4XDbX6SJbDe3S56rNiMWqi2stSQWsr7TLYpyQW8lz6kAEulBK402ZyZWaLZjhndJy1ujHfPVH03wJ8+NU2vFvOeBUT726GFG+xRpLbIbBJ7DPaMF7hldS3OME8v1pXp3TtGluQp/e2GWb52eAtKwhYMDYdpC19lTdGyksKtWy0XuBNcxhIHH+vF5UZywVGszs9LAkibP7SlmeMO6GxfblV4BRHqItemb/YvTFcLAZTCf2epT2nRxYvnzs9N8/pmrLFRbvP3oAL/82FGODue3+tREZIu5juHwYMjhwZB3358es9YyU252i6KLsxV+NL7MX52f7X7fnr7M2hDX4TSFbjCvwcgir4bnOhRcBzo3FNpxwkoj2uKzemVUAIn0iGYU8+J0mZlyi8Fw58/2sdby5KV5Pv3kGNeX6jywt8i/+sD9G1piRERuZIxhT1+WPX1ZHj8x3D2+WGutxXLPpR+fuLgWtjAQ+t2QhbSNrsCevt2xwi6y26gAEukBS7UWpydWsNYyUtj5qz7Pjy/xqSfHOD9d5tBAjn/3oQd5x7FBXYiIyGs2EAa87UjA244MdI9Vm6thC50hrnMVvn91kU7WAvnA7RZFqzOLDg6EO/4GlMhOpwJIZBtLEsu1zqbfYtbf8Qlnl+cqfOrJMZ4bW2S4EPC/vvce3vvAHl1siMimyGc83nignzceWFtZbkYxY/O1bkF0cbbCN348RStOwxYC1+HocNiZU5TOLDo6lN91s9dEepkKIJFtqtGOOTdVZrHaYjCf2dFFwPRKg88+PcZ3zs8SZlx+7Z1H+Zk371N6k4jcdRnP5b49Re7bU+weixPL+GJtQyz337w4yzfXhS0cHkyLorWZRXnCQJdZItuRfjJFtqG5coOzk2UcYxjewS1vy/U2f3TqGl9/fhLHGH7hkYP84iMHKWT10iQi24frpBHbR4byvPeBUSDdpzi90kzb5zptdN+/tsi3z890v29ff7a7p+h4pygaCBW2ILLVdJUhso3EieXybIWrizX6s8GObamot2K+/MPrfOl712lGMe97cA8fefTwji72RGRnMcawtz/L3v4sf+eetbCFhWprQ9DChdkK310XtjCYD9YVRenH0aLCFkTuJhVAIttEtRlxdnKFSjNiKJ/B2YFvhlGc8K0z03zx2ass1do8fnyIX3rsCIcGw60+NRGRO2IwHzCYH+Tk0cHusUoz4nKnKFoNXPjeurCFQsbbELRwfKTAgVJuR7c+i2wlFUAiW8xay8xKk7NTK2Q8l6EdONsnsZbvXpjjM0+NMbnc4KH9ffy7v/cgD+zr2+pTExHZdIWMx5sOlnjTwVL3WKPdCVuYq3T3Fn3t+QnacVoVZTyHo0P57irRiZECR4ZCfHdndgaI3E0qgES2UDtOuDBTYXKpTikMduQb2w+uLfHJJy5zcbbK0aGQf/+zb+BtRwbU7iEiu1rWd7l/b5H7966FLURxwvhivVsUXZyt8J0XZvnGj9OwhdXBr+tXi44NK2xB5NXST4zIFik32pyeWKHZjhku7Lz+7wszFT715BV+cG2JkWKG337fvbzrvlG1dIiI3IbnOhwdznN0OM97H0iPJdYytdzgUmdP0cXZKs+NLfIX59KwBUMnbGGksGFfUX/O37rfiMg2pwJI5C6z1nJ9qc6FmQo532Vwh7W8TS7X+exTY/z1i3MUsx7//CeO8aE37tuxgQ4iIpvJMYb9pRz7Szl+ohO2YK1NwxbW7Sl6YbrM316Y637fUD7oFkSrq0UjO/Bmm8hroQJI5C6qNiNemC6zVGszEAY7ajVksdbiD5+9xjdPT+E5hn968hD/8K0HyGf0MiMicicZYxgqZBgqZHj7urCFcqO9YaXo0myFU2ML3bCFYsZbN6coLY729ytsQXYfXZmI3AWrfd2X56pkPXdHxT3XWhFf+v51vvyD67SihA88tJcPv/0wg3nNuhARuZuKWZ+HD5Z4+IawhSvz1bUhrrNVvvLDCaJOVZT1HY4N5bsF0YmRAocHFbYgO5sKIJFNtlhtcX66TKMd76hVn3ac8I0fT/GHz15lpRHxE/cM80uPHWF/KbfVpyYiIh1Z3+WBvX08sHctdTOKE64t1rpF0cXZKt8+N8PXno8B8DphC+tb6I4N5ckF7lb9NkTuKBVAIpuk0Y65PFdlcrlOMePvmHjrxFq+88Isn31qjJlykzcf7OdXHz/KvXuKL//NIiKy5TzX4dhwgWPDBXhwD7AWtnBxXfvc05fn+bOz00AatrC/lOvOKToxUuD4cJ4+hS1ID1IBJHKHJYlleqXBhZkKGBjO74xNp9Zanru6yKefHOPyXJXjw3n+xXvu4a2HSjvi9ycisputD1v4yXtHgPR1f77a6q4SXZytcHaqzF+/uBa2MFzIcKK7ryjP8eECw4VA7wuyrakAErmDKp2Qg+Vam/6cv2N6qF+YLvPJJ67w/PVl9vZl+Z2fvp+fvHcYR29wIiI7ljGG4UKG4UKGR48NdY+v1DeGLVycrfDM5QU6WQv0Zb1u8ly6UlRgXymr9wzZNlQAidwBq/3UV+ZqZP2dE3IwvljjM0+N8cTFefpzPv/T3z3OBx7au2MKOxERefX6cj5vOVTiLYfWwhbqrTRsoVsUzVX48g/WwhZyvsux4XwatDBc4MRonkMDIZ7eT2QLqAASeZ0Wqi3OT63QipIdE3IwX2nyhWev8Wdnpsh4Lh999DA//5b9mjYuIiK3lAtcHtzXx4P71sIW2nHC1YVaN33u4myFPz87zZ+2J4E0bOHIUNjdU3SiMwQ26ytsQTaXrmZEXqNGO+bSbIXJ5QZ9WZ9Cvvc3glaaEV/63jhf/uEESWL50Jv28U9PHqIUKtJaREReHd910sJmpNA9FieWyeV6tyC6NFflqUvz/NmZNGzBMXCglEtjuYfX9hYVs73/HivbhwogkVdpNeTgxZkyjjE7YrJ2K0r42vMT/PGpccrNiHfdN8I/e8cR9vZnt/rURERkB3Edw8GBkIMDIX/3vrWwhdlKk0vrYrlPTyzznRdmu983WsysDXEdTvcXDeYVtiCvjQogkVeh3GjzwnSZlUabUjbo+d7lOLH85fkZPvf0VeYqTR45XOKXHz+64W6diIjIZjLGMFrMMlrM8tjxtbCF5Xq7WxBdmkvb6J66tNB9vJTzu8lzq8XR3n6FLcjLUwEk8gq044RrCzWuzFcJfY/hfG+vjFhrefbKAp96coyrCzXuHS3wv73v3g3Tw0VERLZSf87nrYcHeOvhge6xWivi8lx1Qwvd//eD68TrwhbWVorSmUWHBnI9f8NS7iwVQCIvY77S5Px0mXacMJTP9PydpTOTK3zyiSucnVxhf3+Wf/PBB3jniSG1EYiIyLYXBh4P7e/nof393WPtOGFsvtYtiC7NVvjW6SmaUQKA7xqODOU5MZznxGjaQndkKFTYwi6mAkjkNhrtmIszFabLachBMdPbGzDH5qt85qkxnr68wEDo8xvvPsH7H9yju2I9oNGOqbUiLOk0djBYLNi0n94x5oaP4HS+FhHZ6XzX4Z7RAveMbgxbmFiqd4uii7MVvntxnm+tD1sYCNNZRZ0WuuMjBQoZXRrvBvpbFrlBklgmlxtcmCnjuQ4jhd5ud5stN/n8M2N8+9wMWd/llx47ws89vF93vra5ZhRTaUZgoZDzuG9PkWLOJ04sSWKJrSVOLK0ooRnFRLGlGSWdjzGtOMHatFAyrH6kO6jQkBZKq4XT+uLJdYxWBEWkp7mO4dBgyKHBkHffnx6z1jJbbnJxtsLFzkrRj8aX+avza2ELe/oyacjCaBrLfXykwGBeSag7jQogkXVWGm1emCpTaUb0Z/2eXh0pN9r88XPj/OmPJrAWfu7h/fzi2w7Rn+vtlaydrBUlVJptLJAPXO4bLTKQD8gFr61YTRJLlFiSTrEUdYqnKLHESUIrSmjFCe04oRVZotjSiGLacUKnnb5bNDmGdcc2Fk83rj6peBKR7cgYw2hfltG+LI+fGO4eX6q1unuKVgujJy/Ndx8vhX53T9FqrPeevt5PgN3NVACJsNY/fG2hShh4DOUzW31Kr1mjHfPVH03wJ8+NU2vFvOeBUT726GFG+3p7JWunascJlWZEklhygcvxkQJDheCODJ11HEPwGgfzri+e0oJp/X9rxVMrTmhHlnacUG+vFU+mUzmttu2tX3nqtumpeBKRbaAUBjxyJOCRIxvDFi510ucuduK5v391sXsjKB+4HOvOKUpjuQ8OhDtiGPpusKkFkDHmg8DvAi7wX6y1/+GGx98NfBm43Dn0JWvt/7WZ5ySynrW2E3JQoR0nDPZwyEGcWP787DSff+YqC9UWbz86wC8/dpSjw/mtPjW5QTtOqDYjYmvJei5Hh0KGChny26j3/PUUTxuKJbuxeIo6K07NKKGd3Lp4grWiyXS+sHZj8XTj6pOKJxG5k8LA440H+nnjgbWwhVaUMDZf7e4pujRb5Runp2h1whYC1+HocLghlvvoUJ7A691ukp1q095tjTEu8HvA+4Fx4FljzFestWdueOrfWGt/drPOQ+R26q2Yi7NlZstNilmfvh6dMm2t5clL83z6yTGuL9V5YG+Rf/WB+zck5MjWizorPXFiyfgOhwdDhooZ8oG74y7cXce85rugNxVPcfoxShLi2KarTp3iqdXZ81Rvx8TJuuKpWzCtrTw5GBzH4BqD46DiSURetcBzuHdPkXv3FLvH4sQyvljrps9dnK3yNy/O8s3TU0DaPnxoIOysFKV7io4P57fVDa/daDP/9B8FLlhrLwEYY74I/DxwYwEkclcliWViuc6FmQqe4zDcwyEHz19f5lNPXOH8dJlDAzn+7Yce5LFjg7qY2yaiOKHaSlc2As/h4GCO4UKGQsbT39FtvN7iKUoSkoRbFk/NaHW/09rqUz2+oXji5ra9lyqe1O4isru5ThqxfWQoz3vuHwXSG5PT5ebaENfZCj+4tsS3z890v29ff7Y7p2i1OBoIFbZwt2xmAXQAuLbu63HgHbd43uPGmB8CE8DvWGtP3/gEY8zHgY8DHD58eBNOVXaLlUabFybLVFoRpVzQsxcvl+eqfPrJK5waW2QoH/C/vPcefuqBPT37+9lJ4sRSaUZESYznuOzrzzJczNCXVdGz2dLi6dUHRlhrSSzd4mn9x9haosiuC4vorD61E9pJ2r4Hq/HkdCsnFU8iu5cxhr19Wfb2ZXnnurCFxWqLi3OVtcCF2SrfvbgWtjAYBmtDXDurRXuKClvYDJtZAN3qb8ve8PX3gCPW2oox5kPAfwPuvembrP0E8AmAkydP3vhriLysVpRwdb7K1YUa+UzvhhxMrzT43NNj/NX5WcKMy6++8yg/++Z9ZDxFWm+lOLFUmxHtJMFzDHv7s4wUshSzHo4ucrc9YwyuYV3x9Mp/nqy9ea/T+uKpHSW0O6177SihGSdEUUIrtsQ22fCueNPK02o8uYonkR1hIB9wMj/IySOD3WPVZrRuT1FaHH1vfdhCxu3OKVoNXDhQyuk14HXazAJoHDi07uuDpKs8XdbalXWff90Y85+NMcPW2rlNPC/ZRay1zFWanJ8uE8eWoUJvhhws19v80alrfP35SRxj+IVHDvCLjxyikFUP8VZJbFr0tOK06BntyzJazNCX9VX07CLGGDzXvKY301sVT+v/W40nb69L3Ys6H2Nru/ucoFM8dfY+ARtmO7nGEHiOLphEtqF8xuNNB/p507qwhWYUMzZf664SXZqt8LXnJ2nH6Q944DkcG8qvFUXDaQuewhZeuc28enoWuNcYcwy4DnwY+Oj6Jxhj9gLT1lprjHkUcID5m34lkdeg3oq5MFtmrtykLxsQZHvvhaHRjvnyD67zJ9+7TjOK+akH9/DRRw8zXOjNFaxel1hLrRnTjGMcY9jTl2G0mKUv5+viUl61O1E8rY8qT9YVT6thEVFiqbdiyo02UbI2DDdwHQLPIXAdtdeIbDMZz+W+PUXuWxe2EMUJ44v1DbHc33lhlm/8OA1bcB3DoYFcd0/RiZE8x4bzd2Skwk60aX8q1trIGPObwLdI+wn+wFp72hjz653Hfx/4ReB/NsZEQB34sLVWLW7yusSJZWKpzsXZCn6PhhxEccJ/PzPNF569ylKtzWPHB/nlx45yaDDc6lPbday1VFsxzSjGGBgpZNnbX6Qv6/X0oFzpbd3i6VV0vzajmEY7odGKWGlErNQjFmttbGcpyTGGTKco0r9tke3Fcx2ODuc5OpznvQ+kxxJrmV5pbNhT9L2ri3z73MawhdU9RautdCWFLWB6rd44efKkPXXq1FafhmxTy/U2L0ytUG3FPRlykFjLdy/M8ZmnxphcbvDQ/j5+9fGjPLCvb6tPbVex1lJrxTSiGICRYoa9felKj68LQ9lBkiRNx6u3Y6rNiJV6m5VGm2ZnrgmA5zhpYeQ5PdlCLLLbLFRb3T1FFzvF0Uy52X18KB9s2FN0YjjPyB0IW2h3hmM/dnzo9f4W7ghjzHPW2pO3ekzrYrIjtKKEK/MVxhcbFILeDDn44bUlPvnEFS7MVjgyGPJ//uwbOHlkQO0pd4m16TyZWitd6RnKB9yzp0C/ih7ZwRzHkAtccoHLYH7trnA7Tmi00xWjciMtilYabZJk7aZp4LpkfAfPMXqdEtlGBvMBg/lB3n50LWyh0og67XOdFLq5Ks+NrYUtFDPehjlFJ0YL7O/fuWELKoCkp1lrmS03eWG6TGJhOB/03BvxhZkKn3ryCj+4tsRIMcNvv+9e3nXf6I590dlu6q2YWjsCYCD0OTactgdoM6nsZr7r4LsOxWy6Agrp620zSmi2E+rtiOV6m+Vam5VG3N1btBq4kPFcvYaJbCOFrMebD5Z488FS91ijHXNlvsql2bUhrl/94QRRpyrKeA7HhtfFcg8XODIU7oibgiqApGfVWhEvTldYqLZ68i795HKdzz41xl+/OEcx4/HPf+IYH3rjPl143wWNdky1FWEtlEKfB4eKlPKB4sRFXoIxhqzvkvVd+vHZ258D0n2X6WpR2ka33Ehb6VZnJAH4jtMpjBS6ILJdZH2XB/b28cDetTb7KE64tlhfi+Weq/LtczN87fm0JdxzDIcHw25BdGK0wLGhPLmgt94/VQBJz4kTy/XFGpfmqgSu03OJaIu1Fn/47DW+eXoK1zH8k5OH+IW3HiCf0Y/jZlotegCKWZ8H9hYphQFZv7detEW2G9cx5DNeOmNt3etxK0poRGlhlO4tiliqt0lsmkZnSFeLAs/puRtYIjuV56arPseG8/DgHiDdnzy13Fhrn5ut8OyVRf78bBq2YID9pRzHhvO85VBp2+wBeim64pKeslxrc25qhVorZiDsrZCDSiPiS98f56s/mqAVJXzgob18+O2HN/Tdy53VjNI70tamy//3jRYZLKjoEbkbVoubvqzPaDFN41xto6u3YmqtiOVGm5V6xEqj3f0+z3G6Md299BovslM5xrC/lGN/KcdP3jsCpD/Lq2ELF2erXJqrcH66TNbvjZsZKoCkJzSjmMtzVSaW6hQCv6dWfWqtiK/8cIL/9v3rVFsxf/feYT766BEODOS2+tR2pFaUUG1FJNaSD1zuGS0wmM/03PK8yE60vo1uIB9woHM8ihMaURq8UGmk+4tWZxetyrhuZ7VIoQsiW80Yw1Ahw1Ahw6PH0hWfdpwmSvYCFUCyra2GHJyfLoOF4fzrj2m8WxrtmK8/P8l//d445UbEO44N8rF3HEmXleWOascJ1WZElFjCwOXYcJ7BfKC2QpEe4bkOBdehkPE23OBaP7todW/RYi0CLBbNLhLZbnpl1VZXB7JtVZsRF2Z6L+SgHSd86/QUf3TqGou1No8cLvGxdxzZMNFZXr92nK70RHFCzvc4MhQyWMiQD9yeKZJF5KVlPJeM59Kf89nTnx5LEtvZW5RsnF10QxudZheJyO2oAJJtJ04s4wtpyEHWc3um3S2KE/7i3AxffPYac5UmD+3v419/8AEe2t+/1ae2Y0RxQqUZEVtLxnM4NBAyVAgoZDwVPSK7hOMYwsAjDHj52UX1NnFiMSZt2fHdtDDqlRtqIrI5VADJtrJUa3Fuqkyj3TshB3Fi+ZsXZ/n8M1eZXG5w354Cv/VT9/LwwX5dlN8BcWKpNCOiJMF3HQ4O5hgqZCiq6BGRdV5qdlGjHVNvxSzX290VI80uEtm9VADJtrAacnB9qU5fxmcov/1XfRJrefLiPJ975irXFmocG87zf/zMg7z96KAuzF+n9UWP5xj29ecYLqZFj6MLFBF5hdaHLpRC2Fd65bOLVpPoAlezi0R2GhVAsqWstUwvN3hxtgLASA+EHFhreW5skc88Pcal2SoHB3L86w8+wDtPDKnX/HWIE0u1GdHuFD17+rKMFrMUsyp6ROTOeiWzi5ZraUT3Ur2NtWkanWYXiewMKoBky1SbES9Ml1mstSn1SMjBD8eX+OxTY5ybKrOnL8Nvv+9e3nXfqNomXqPEWmrNmGYc4zqG0WKGPX1Zillff6YictfdanZRkqy10Wl2kcjOoAJI7rooTri2WGNsvkbGcxnpgZCDs5MrfPbpMX40vsxwIeBfvPse3vfgqGJXX4PEWmqtmGYU4xjDSDHD3r4ifTkVPSKy/TiOIRe45IKXn1200uiELnSeE2h2kci2pAJI7qrFaovzUys0ooRSbvuHHFyYqfC5p8c4NbZIKefzP/7kMT740D4CT4XPq2E7RU8jijEGRgoZ9vYX6ct6KiJFpCfdanaRtZZWnNBoJdTbESuaXSSyLakAkrui0U5DDiaX6xQzPkN5f6tP6SWNzVf53NNXefLSPIWMx688fpSfffM+sr671afWM6y11Nsx9XaMAYYKGe7pL/TUTCcRkVfDGLM2uwifva9idpHvON0WPO0nFdlcKoBkUyWJZXqlwYWZCsbA8DYPOZhYqvOFZ67ynRdmyfouH3n7IX7+LQfIZ/Sj8kqsL3ogndFxfCQterRqJiK71SuZXbRcb3VXjBILYDW7SGST6KpONk2lGXF+aoXleptSLtjWL94z5QZffPYaf3F2Gs91+IVHDvILbz1AX257r1RtF/VWTK0dATAQ+hwbztMf+mQ8rZiJiNzOy80uqjXj7kBXzS4SuXNUAMmmKDfaPDe22Ak5yG716dzWQrXFH5+6xjdPTwHwM2/axz9+2yEG1t2hk1tbTUSyQH/O58GhIv1hoDZBEZHX4cbZRfu5/eyi5Vo6u8gxaWGk2UUir4wKINkU0ysNPCfdHLodLdfb/Mn3xvnajyaJreV9D+7hn5481L0DJ7fWaMdUWxFYKOZ87ttTZCCvokdEZLO91Oyiejum2Y7TJDrNLhJ5Wdvz6lR6WhQnTC43KGa2X/tYpRnx375/na/8cIJGO+bd94/wkUcPs68/t9Wntm01o/RuowUKgcd9o2nRkwtU9IiIbLXV4oacz2jfq5tdlFHoguxSKoDkjluup3MQtlNfcr0V89UfTfCl749Tbcb8nXuG+eijhzk8GG71qW1L7Tih0oxIEkuYcTkxWmAwHxAGeskQEdnuXsnsotV9RSuNNkmaugBodpHsDrqakTtuYqlOdptsfm9GMd94for/+r1xlutt3n50gH/2jiMcHyls9altO+04jWeNrSXruxwbzjOYD5SAJyKyQ9xudlEzSmi2X352kUIXZKfQlY3cUY12zHy1xWC4tSEC7Tjhz85M84enrrFQbfGWQyU+9o7DPLC3b0vPa7tZv9KT8R0OD4YMFTPkA1d3/kREdoH1oQvrZxfFiaV5w+yipXoaurBKs4ukV6kAkjtqsdrCwJZdPMeJ5S/PzfCFZ68yU27y4L4+fuf99/Gmg6UtOZ/tKOoUPbG1+K7DocEcw4UMhYynokdERIA0dOF2s4vqnTS6tI1Os4uk96gAkjtqfLG2JftEEmv52xfn+PwzV7m+VOeekQK/8e57eORwSRf1pIVhpRkRJQme47C/lGOkL0NRRY+IiLwKq7OL+rI+o8U0dOF2s4vKzTY2AUwaurAa0602OtlqKoDkjqk0IyrNuNtXfDdYa3nq8gKff3qMK/M1jgyG/NsPPchjxwZ3/YV9nFiqzYh2kuA5hr39WUaKWYoZD0dvPiIicoe83Oyiejum0ohYrrcpN9pEie0OddXsItkKKoDkjpkrN/Hcu/PiZa3l+1eX+MzTY1yYqbC/P8vv/PT9/OS9w7u6DzlOLLVWRDNO8B3DaF+W0WKGvqyvokdERO6q9bOL1t8cXd1b1Githi7cPLso46dFkac2OtkEKoDkjkgSy/hincJdaH97/voyn31qjDOTK4wWM/zWe+/lPQ+M7tol9cRaas2YRhTjuYbRYobRYpa+nL9r/0xERGT7ynguGc+lP+ezpxO6sH52UbWVzixarrVpanaRbAIVQHJHrDTSZBjP3bzhp+enyvz/7d15cOTnfd/5z7dvoHEDA2A4M5wZksNjONRJUZIl65bMGalCZZOUJTtW2atEUdby2pXKbpR/srWb2iq7tjYVxyUvi6tosy454W58JFppSOq2ROsgKYniDO8RSXEOYE7c6ON3PPtHdwO/bnQDGAwa3Y1+v6pA9O/sB+gm5vfp7+95ni//+Jd6+uysRrIp/dP33qoPH53oyk6WoXNaLgYq+IFiZtrTn9bEQL8GMgk+QKrFHgAAIABJREFULQMAdJzauYsqvKAUivJeqIU8cxdhexCAsC2m5/NKJ5pz4f3K5UX9+Y9f1xOvXdNAJqFPv+uwjt8zqXSbzDW0U1w59OT9QJI03p/WxECfBnuShB4AwK5UGXShPyPt6d947qLSzEVS3Ewp5i5CAwQg3DAvCHVxPq+hnu2d++fstWX9xyde1+Nnriibjuu33nFQH3vD3paMMtcqzjnlyh1IJWmsL63bBkuhpxsrXwAAbDR3Ua4YaKnga64cjJi7CLW650oSTTOzVJRz2rY/JNNzef2nJ17Xd1+6pHQirl+/94A+/uZ96kt3x9s1GnqcSvMvHB7Laqg3pVSTqmwAAHS61bmLEhqNDLpQ9EPl/cZzF0m20reIDxe7Q3dcUaKpzs/m1JO88dvRriwW9PCTZ/XN5y8qbqYH3rRPf+8t+zXY07x+Re2k0vHTOWm4N6nDY1kN9ia77lY/AAC2U6Xis97cRXN5T3O5Uv+iCuYu2r02HYDM7I2SfrW8+H3n3M+b0yR0klwx0Oyyd0Nz/8wsF/UXPzmnR05PyTnp/rsn9Q/eur/q05vdqhJ6JKk/k9Rdk/0a7E0psw2BEgAA1Ndo7iI/CJUvByPmLtq9NhWAzOz3Jf1jSX9VXvVlM3vIOfcnTWsZOsLVpYK2+qHIQt7TX/70vL76zAV5QagP3jWhT9x7QOMDme1tZJvxgrD0CZOT+jIJ3THRr+EsoQcAgFZLxGPqi8fUt8m5i8LQSVbqBpBOMHdRp9hsBejTkt7unFuSJDP7I0k/lLRuADKz+yX9saS4pC865/6wwX5vk/QjSb/unPuLTbYJLeZcae6f/sz13aK2XPT1X5++oP/y9HnlioHec/seffJtN2vfcE+TWtp6zjktlYetziTiOjLep5FsWj0pQg8AAO1uvbmLcl5p0IX58i10zF3U/jYbgExSEFkOyusaH2AWl/QFSR+WdE7Sk2b2Fefcc3X2+yNJj2220WgPCwVfuWKgbN/m3kZ5L9BXn5nSX/30nBYKvt55y6h+8+036+BotsktbR2/XO0JnTQ+kNa+oX4N9iQpmQMA0OGicxeNXO/cRYm40gy60DKbDUD/l6Qfm9lfl5c/Lunfb3DMfZLOOOdekSQze1jSA5Keq9nv9yT9paS3bbItaBOX5vOb+h+36Id69Nlp/eefnNXssqe3HhzWP3z7Qd023rcDrWyN5aKv5WKgZDymw2NZjQ9kuMUNAIAusJm5i+ZynuaWS8Go0reIuYt2zqYCkHPu35jZdyW9W6XKz+845362wWH7JJ2NLJ+T9PboDma2T9LflfQBEYA6ShA6Tc/l1ZdufPubH4T65vOX9P889bquLBZ1z75B/cvjB3V078AOtnTnBKHTQsGTH4Qa7k3ptvE+DfWm+CMGAECXWzt3Uem2/yB05WrRxnMXpRMMurBd1g1AZjbgnJs3sxFJr5W/KttGnHPX1ju8zjpXs/xvJf0L51yw3gtqZp+R9BlJuvnmm9drMnbIXK40Ikqji/u/PXNF/+EHr2l6Pq87Jvr1Bx+6XW/cP7TDrdwZlZHc4jHT/uEeTQxkumqyVgAAsDXxmCmbTiib3njuormcp9CVLqVNtjK8N7fRXb+NrtL+o6SPSfqJqsNLpVp3yzrHnpN0ILK8X9KFmn3ulfRwOfyMSTphZr5z7r9Ed3LOPSTpIUm69957a0MUWuDCbK7h/DTnZ3L6w0df0KHRXv2rjx3VvQeHd90nFqFzWsj78sNQfZmEju4d0Eg2xcgvAADghq03d1GuGGi56Gsu72k+5zN30RasG4Cccx8rfz+8hXM/KemImR2WdF7SJyT9Rs35V85rZv9B0ldrww/aT8EPdHmxoNHeVN3tj5yeUjxm+l/+zjENZ+vv06kKfqDFgi8z6abBHk0OZq57FDwAAIDrFb2Nbjib0r7y+s3MXZSOx8vVItt1H0pvxWbnAfqWc+6DG62Lcs75ZvY5lUZ3i0v6knPuWTP7bHn7gzfQbrTQ7FJRJtX9HyjvBfrmCxf1K7eO7prw45zTYsFXwQ/Vm4rrjol+jfallUpQ7QEAAK21mbmLKn2LZpZ9SU5O3T130UZ9gDKSeiWNmdmwVvv1DEi6aaOTO+dOSjpZs65u8HHO/fYm2os2cHYmp2yDPi6Pv3xFS4VAJ47t3eFWbb/KhKVO0kR/RvuGejTQk+CTEwAA0PYazV2ULwejbp67aKMK0D+R9AcqhZ2faDUAzas0xw+6zFLB10Ler/qEIeprp6d080iv7r6pM0d6c85puRgo5wdKJ2K6bbxPY31phrAGAAAdLxYz9aYS6k1pk3MXSZKTmSkZj+2auYs26gP0x5L+2Mx+zzn3JzvUJrSxKwsFJRp0qnvp4oLOXFrUZ99zS8dVSfwg1GLBV+CcRrMp3TFZmrA0RgdCAACwy603d1HeC5QrBprLeSsVo3pzF3WSzc4D9CdmdkzSUUmZyPo/a1bD0H7C0OncbE7ZdP23zclTU8okY3r/neM73LKtWy76WvZ8JWMx3TzSq/GBjHpSnfU/MQAAwHaLDrow1CvtHVp/7qJiEKo/0xnTgGx2EIT/SdL7VApAJyUdl/S4JAJQF1nI+/KCUAN1Rj1byHv6/stX9IE7x9t+DpwgdCujowz2JnXP+JCGmbAUAABgQ+vNXVSZp6jdbfZK9e9LeqOknznnfsfMJiR9sXnNQjuans8pGat/3+e3nr+kYhDqxD2TO9yqzct7pSGs4zHTTUOlIaz7GlSzAAAAsHmdNDruZq/+8s650Mx8MxuQdEnrT4KKXcYLQl2cL2iwZ231J3ROJ09P6a69Azo81teC1jUWOqfFvK9iEKovHdfdNw1oOJvaFR34AAAAcP02DEBW6s3+jJkNSfo/VRoNblHSE01uG9rIXM5T6Fzd4RB/fnZWU3N5/cZ9N7egZfUV/VALhVInvcnBjPYO9ag/zRDWAAAA3W7DAOScc2b2JufcrKQHzexRSQPOuWea3zy0i/Mzy+ppMBT0ydNTGuxJ6l23je1wq6o557RUCFQIfGUSCd0+3q/R/lTHjUwCAACA5tnsLXA/MrO3OeeedM691swGof3kvUAzy55Gs2vn/rm8UNATr17Tf/Pm/S27rcwLSmPWh04aH0hr31BpCGuqPQAAAKi12QD0fkn/xMx+KWlJpQlRnXPuDU1rGdrG1cVCw22PPTst56T7j+384AfLRV85L1AiFtMte/q0p58JSwEAALC+zQag401tBdqWc07nZnLqT68d/MALQn39uWm99eCwJgYydY7efkHotFDw5AehRrIpHZno1xATlgIAAGCTNjsR6i+b3RC0p8WCr1wx0Gjf2rfKj165qpllTx+9Z2/T25ErBloq+krGTfuHezQxkGn7+YYAAADQfriCxLouzRcaThB68tSUJgbSevPNw0157iB0WiyUJl/t70no7psGNJJNKcEQ1gAAANgiAhAaCkKnqbmc+jNrb397/dqyTl+Y12//yqGGAWmrCn5pwlIz6abB0oSl9doAAAAAXC8CEBqaz3nyQ1c34DxyakqJmOlDd01sy3M5V6r2FPxQvam47pjo11h/mglLAQAAsK0IQGhoai5Xdw6dXDHQt164pHcfGdNgz41VZrwg1HzekyRNDGR001CPBjJMWAoAAIDmIAChrqIf6tJCQSO9qTXbvvvSJeW8QB89trXBD5xzWioGynuBMsmYbhvv01gfQ1gDAACg+QhAqGtmqTT3T20lxjmnk6emdMtYVndM9l/XOf0g1ELBV+icRrMp3TlZmrCUIawBAACwUwhAqOvcbF7ZOsNMvzC9oNeuLut333fbpm9TW52w1HRwpFfjAxn1pKj2AAAAYOcRgLDGctHXQt7TaDa9ZtvJU1PqTcX13tv3rHsO55zmyoMoDPYmdet4n4Z7U9s+YhwAAABwPQhAWOPKQkGxOtWduZynx89c0f3HJjes4MzlPI32pXRwNKtsmrcZAAAA2gNXpqjinNP52Zz66oSWbzx3UX7odHyDwQ9C5+SHTrfs6WNgAwAAALQVJllBlfl8aS6e2vl3gtDpkdNTumffoG4e6V33HAt5XzcNZQg/AAAAaDsEIFS5OJ9XMrb2bfHT12d0aaGgE/esX/1xzskLAu0fXj8kAQAAAK1AAMIKPwg1PZev22fn5KkpDfcm9Y7DI+ueY7Hga3wgQ78fAAAAtCUCEFbM5jyFzq0ZqW16Pq+f/HJGH7l7Uon4+m+ZvB/owAa3yAEAAACtQgDCiguzOfXU6bfz6OlpmUn33z257vFLBV8jvSkNZJLNaiIAAABwQwhAkCTlvUBXF4trApAXhPrGc9N6++FRjfWtnRcoKuf5OjSWbWYzAQAAgBtCAIIk6dpiUWaS1cz/87dnrmg+7+v4sfWrP7lioP5MUoM9VH8AAADQvghAKM/9s1x37p+Tp6Z002BGbzwwtO45ljxfh8eyawIUAAAA0E4IQNBSMdBSMVA6UX3726tXFvX89IKO37NXsXWCTcEP1JOMa7g31eymAgAAADeEAARdXsgrXifgnDw1rVQipg/dObHu8YsFX7eMZRWLUf0BAABAeyMAdbkwdDo/k1tz+9tSwdd3X7qk9xwZU1+m8Zw+XhAqGY9pdIMBEgAAAIB2QADqcnM5T37o1szv850XLynvhTpxbO+6x8/nPR0eza6ZOwgAAABoRwSgLjc9n1c6Xt33xzmnk6emdGS8T0cm+hse6weh4jHTngGqPwAAAOgMBKAuVvRDXZrPqzddHYBOX5jX2ZnchtWfubyngyO9SsZ5GwEAAKAzcOXaxWaXiwqd1ozwdvLUlPrSCb37yFjDY4PQySRNDGaa3EoAAABg+zQ1AJnZ/Wb2opmdMbPP19n+gJk9Y2ZPm9lTZvbuZrYH1c7N5pRNVQ9wcG2pqB++clUfumtcmWS8wZHSQt7T/uHeNUNnAwAAAO2saQHIzOKSviDpuKSjkj5pZkdrdvuWpDc6594k6b+V9MVmtQfVcsVA88ueelLVAeYbz00rCJ2Or3P7W+icAue0b7in2c0EAAAAtlUzK0D3STrjnHvFOVeU9LCkB6I7OOcWnXOuvJiV5IQdcWWxsGbeniB0evTZab3pwJBuGmocbhbyvvYOZtatEAEAAADtqJkBaJ+ks5Hlc+V1Vczs75rZC5K+plIVaA0z+0z5FrmnLl++3JTGdhPnnM7NLK+Z++eJ167pymJRJ+5pXP1xzskPQu0f7m12MwEAAIBt18wAVG9imDUVHufcXzvn7pT0cUn/ut6JnHMPOefudc7du2fPnm1uZveZz/vKe+Ga0dtOnprSWF9K9x0aaXjsYsHX+EBa2XTjyVEBAACAdtXMAHRO0oHI8n5JFxrt7Jz7nqRbzazx0GPYFpcX8mvCz4XZnJ4+O6tfu3ty3UlNC36o/SNUfwAAANCZmhmAnpR0xMwOm1lK0ickfSW6g5ndZlYag9nM3iIpJelqE9vU9fwg1NRcfs3tb4+cnlI8ZvrI0cmGxy4VfI1kUxrIJJvdTAAAAKApmnYfk3PON7PPSXpMUlzSl5xzz5rZZ8vbH5T09yR9ysw8STlJvx4ZFAFNMJfzFISuqspT8AN98/lLeuctoxrJphoem/MC3bm3fyeaCQAAADRFUztyOOdOSjpZs+7ByOM/kvRHzWwDql2YzSlTM3fP91++osWCv+7gB7lioP6ehAZ7qP4AAACgczV1IlS0l7wX6OpSUb01c/+cPDWlAyO9OnbTQMNjlzxfh0ezKt+xCAAAAHQkAlAXmVkqyqSqEPPSxQW9fGlRJ45NNgw3BT9QbzKu4d7Gt8cBAAAAnYAA1EXOzSyrN7V28INMMqb33zHe8LjFgq/DY9k1E6cCAAAAnYYA1CUWC74WC4EyydXb3xbzvr730hW97/bxhvP6eEGoVCKm0b70TjUVAAAAaBoCUJe4slBQIl5dwfnmCxdVDEKduKfx0NfzeU+HRrLrzg0EAAAAdAoCUBcIQ6dzMzn1RW5/C53TI6emdNdkvw6P9dU9zg9CJWKm8QGqPwAAANgdCEBdYD7vyQtCJeKrL/cz5+Z0YS6/7tDXc3lPB0ezVccBAAAAnYwr2y4wPZ9XOlH9Up88NaWBTELvum2s7jFB6BQzaWIgsxNNBAAAAHYEAWiX84JQF+fzVYMcXFks6MevXtWHj04q2aC6s5D3tH+4V6kEbxEAAADsHlzd7nIzS0U5J8Uic/w8+uy0nJPuP1Z/8IPQOQXO6aahnp1qJgAAALAjCEC73PnZnHoiQ1/7QaivPzuttx4c1mSD29sW8r5uGuqpGjIbAAAA2A0IQLtYrhhodtmrmvz0R69e08yy13DwA+ecvCDU/mGqPwAAANh9CEC72NWlgmqn7zl5akrj/Wm95ebhuscsFnxNDGSqQhMAAACwWxCAdinnynP/pJMr685eW9ap83M6fmxvw4lNC36oAyNUfwAAALA7EYB2qYWCr1wxqBrF7eTpKSVipg8fnah7zFLB10hfSv2ZZN3tAAAAQKcjAO1Sl+bzVUNc54qBvv3CJb37tjEN9tQPOMteoEMj2Z1qIgAAALDjCEC7UBA6Tc/l1ReZ++dvXrqs5WLQcPCDXDHQQE9CAz30/QEAAMDuRQDaheZynvzQrfTzcc7pkdNTOjyW1Z2T/XWPWfJ83TLWJ7P6fYMAAACA3YAAtAtdmM0pnVidw+fF6QW9cmVJx49N1g04eS9QbzKu4V76/gAAAGB3IwDtMgU/0JXFgrKp1QD0tdNT6knG9b7bx+ses1T0dXgsS/UHAAAAux4BaJeZXSpK0kqYmct5evzlK/rgnePqiYSiCi8IlUrENNqX3tF2AgAAAK1AANplzs7klI1MYvrN5y/KD53uPzZZd/+5nKfDo9mG8wIBAAAAuwkBaBdZKvhayPvKJEuVniAsDX5w7KYBHRxdO7y1H4RKxk17+qn+AAAAoDsQgHaRKwsFJSKVnJ+9PqOL84WGQ1/P5z0dHM0qEedtAAAAgO7Ale8uEYZO52Zzykbm/jl5ekrDvUm945bRNfsHoZOZNDGQ2clmAgAAAC1FANolFvK+vCBUslzNuTif11OvzegjRydX1kXN5z0dGOlVKsFbAAAAAN2Dq99dYno+p2Rs9eV89PS0zKRfu3vt4Aehcwqc097Bnp1sIgAAANByBKBdwAtCXZwvqC+TWFn+xvMXdd/hkboDHCzkPe0f6lkZLAEAAADoFgSgXWAu5yl0TrHy3D9/e+aK5nKejh9bO/iBc05e4LRvmOoPAAAAug8BaBc4P7Osnkg15+Tpae0dzOhNB4bW7LuQ9zUxkFFvZK4gAAAAoFsQgDpc3gs0s+ytBKBXryzp+al5nTi2d6UiFFUIQh0YofoDAACA7kQA6nBXFwuSJCuHnUdOTykVj+mDd42v2Xex4Gu0L6X+THJH2wgAAAC0CwJQB3PO6dxMTv3pUqBZLvr6zouX9KtHxuqGnJwX6NBIdqebCQAAALQNAlAHWyz4yhWDlbl8vvPCJeW9UCfuWTv4wXLR12BPUgM99P0BAABA9yIAdbBL8wXFY6Vb35xzOnl6WreN9+n2if41+y4XAx0ey67cKgcAAAB0IwJQhwpCp6m53Mqtbs9emNfr15b10TpDX+e9QL2puIZ76fsDAACA7kYA6lDzOU9+6FYqQCdPTymbjuvdR8bW7LtY9Kj+AAAAAGpyADKz+83sRTM7Y2afr7P9N83smfLXD8zsjc1sz24yNZdTOlEa+npmqagf/OKqPnTnhDKR+YAkyQtCpRNxjfalW9FMAAAAoK00LQCZWVzSFyQdl3RU0ifN7GjNbq9Keq9z7g2S/rWkh5rVnt2k6Ie6tFBQNlUKO19//qKC0Ol4ndvf5nKeDo9mVypFAAAAQDdrZgXoPklnnHOvOOeKkh6W9EB0B+fcD5xzM+XFH0na38T27BozS6tz/wSh06Onp/WmA0PaN1w9wakfhErGTXv6qf4AAAAAUnMD0D5JZyPL58rrGvm0pEfqbTCzz5jZU2b21OXLl7exiZ3p7GxO2VRpOOsnX7umK4sFnTg2uWa/+byng6NZJeJ09QIAAACk5gagevdcubo7mr1fpQD0L+ptd8495Jy71zl37549e7axiZ1nuehrMe+v9PU5eWpKo9mU7js8WrVfEDrFzDQxkGlFMwEAAIC21MwAdE7SgcjyfkkXancyszdI+qKkB5xzV5vYnl3hykJBsfJobhdmc/rZ2Vndf2xyTR+f+byn/SM9K5OkAgAAAGhuAHpS0hEzO2xmKUmfkPSV6A5mdrOkv5L0W865l5rYll3BOafzszn1pUu3vz1yelrxmOkjR6tvfwudU+ic9g721DsNAAAA0LUSzTqxc843s89JekxSXNKXnHPPmtlny9sflPSvJI1K+tPyHDW+c+7eZrWp083nfRX8UH3ppAp+oG8+f1HvuGVUI9lU1X4LeU/7hnrWDIkNAAAAdLumBSBJcs6dlHSyZt2Dkcf/SNI/amYbdpOL83klY6Wi3eMvX9FiwddHawY/cM7JD92aEeEAAAAANHkiVGwfPwg1PZdXtnz728nTUzow3KNj+war9lvI+5oYyKg31dRsCwAAAHQkAlCHmM15Cp1TPGZ6+eKCXrq4qOPH9qp86+CKYhBqP9UfAAAAoC4CUIc4P5tTT7lPzyOnp5VOxPSBO8er9lks+BrtS6k/k2xFEwEAAIC2RwDqAHkv0LXFonqScS3mff3Ny5f1vjvGV26Hi+53cCTbolYCAAAA7Y8A1AGuLRZlJpmZvvXCRRX9UCdqBj9YLvoa7E1qsJfqDwAAANAIAajNleb+WVZfOiHnnB45Pa07J/t1y56+qv2Wi4EOjVL9AQAAANZDAGpzS8VAS8VA6URcz5yb0/nZnE7cs7dqn7wXqC8d1zDVHwAAAGBdBKA2d3khr3h5pLevnZpSfyahd906VrXPUtHXobHsmhHhAAAAAFQjALWxMHQ6P5NTXzqhK4sF/fjVq/rI0QmlEqsvW9EPlU7ENJpNt7ClAAAAQGcgALWxuZwnP3RKxGN67NlpOSfdf3f17W8LBU+HR7OKxaj+AAAAABshALWxqbm80vG4/CDU15+9qLceHNbkYGZluxeESsRMY/1UfwAAAIDNIAC1qaIf6vJCXr3puH786jVdWy7q+LGa6k/e06GxrBJxXkYAAABgM7hyblOzy0WFToqZ6eSpKY33p/XWg8Mr24PQycw03p9Z5ywAAAAAoghAbercbE7ZVEJnry3rmfNzuv/YpOKRfj7zeU83j/RWDYgAAAAAYH1cPbehXDHQ/LKnnlRcj5yeUiJm+vBdEyvbQ+cUOlfVHwgAAADAxghAbejKYkGxmCnvBfrWC5f0rtvGNNSbWtm+kPe0f7hHmWS8ha0EAAAAOg8BqM0453RuZll96YT+5qXLWi4GOnHP3qrtfui0b6i3ha0EAAAAOhMBqM3M533lvdLw1idPTenQaK/umuxf2b6Q9zU5mFFPiuoPAAAAcL0IQG3m0nxeyXhML15c0CtXlnTinr0yWx38oBiE2j9M9QcAAADYCgJQG/GDUNPzefWlEzp5ako9ybjee/uele2LBV9jfSn1pRMtbCUAAADQuQhAbWQu5ykInRYLvh4/c0UfuHNcvanVsJP3At08mm1hCwEAAIDORgBqIxdmc8ok4vrW8xflBU7Hj02ubFsu+hrsTWqwJ9nCFgIAAACdjQDUJvJeoKtLRWWSMZ08PaW7bxrQwUi1Z7kY6DDVHwAAAOCGEIDaxMxSUSbpZ2dndXG+oI9Ghr7Oe4H60nEN9VL9AQAAAG4EAahNnJtZVm8qoUdOTWuoN6l33DK6sm2x4OvQWLZqNDgAAAAA148A1AYWC74WC4Hmcp6efO2aPnJ0Usl46aUp+qEyyZhGs+kWtxIAAADofASgNnB5Ia9E3PTYs9Myk37t7omVbQsFT7eMZRWLUf0BAAAAbhQBqMXC0On8TF7peEzfeO6i3nZoROP9GUmSF4RKxE2jfVR/AAAAgO3AjJotNp/35AWhnj47r9mcpxORwQ/m855uG+9TIk5OBQAAALYDV9YtNj2fVzoR08lTU9o7mNGbDgxJkoLQKWamiYFMi1sIAAAA7B4EoBbyglAX5/O6vFjQc1PzOn5sUrHySG9zuaIOjvSuDIYAAAAA4MZxdd1CM0tFOSc9enpaqXhMH7yzNPhB6JycpMkhqj8AAADAdiIAtdD52Zycc/rui5f17iNjGugpTXQ6n/e0f7hX6US8xS0EAAAAdhcCUIvkiqV5f3786oxyXqCPlgc/cM7JD5z2DfW0uIUAAADA7kMAapEriwXJOT1yakq37enTkfE+SdJ83tfeoYx6UlR/AAAAgO1GAGoB55zOz+R0diavX15b1ol7JmVmcs7JC0LtH+5tdRMBAACAXYkA1AILBV85L9A3nptWNh3Xrx7ZI0laKgQa60upL830TAAAAEAzNDUAmdn9ZvaimZ0xs8/X2X6nmf3QzApm9s+b2ZZ2cmk+r+VioB/84qo+eOeEMsnS7W4539fNo9kWtw4AAADYvZpWajCzuKQvSPqwpHOSnjSzrzjnnovsdk3Sfy/p481qR7sJQqfpubx+8Isr8kOn48cmJUnLRV9DvSkNlkeCAwAAALD9mlkBuk/SGefcK865oqSHJT0Q3cE5d8k596Qkr4ntaCtzOU9FP9Rjz17UG/cPrvT3yXm+DlP9AQAAAJqqmQFon6SzkeVz5XXXzcw+Y2ZPmdlTly9f3pbGtcqF2ZyenZrXlcWCTpSHvs57gbKphIZ6qf4AAAAAzdTMAGR11rmtnMg595Bz7l7n3L179uy5wWa1TsEPdGWxoG+/cEkj2ZTefnhUkrRY8HVoLCuzer8yAAAAANulmQHonKQDkeX9ki408fna3sxSUZfm8/rZ67O6/+5JxWOmoh+qJxnTaDbd6uYBAAAAu14zA9CTko72m0diAAAVU0lEQVSY2WEzS0n6hKSvNPH52t65mZy+//IVxUz6yNEJSdJCwdPhsaxiMao/AAAAQLM1bRQ455xvZp+T9JikuKQvOeeeNbPPlrc/aGaTkp6SNCApNLM/kHTUOTffrHa1ylLB19XFor774mW985ZRjfal5QWhkvGYxvozrW4eAAAA0BWaOuOmc+6kpJM16x6MPJ5W6da4Xe/KQkE//eWMFgr+yuAH83lPt433KU71BwAAANgRTZ0IFSVh6HRuNqdvv3hJ+4d7dM++QQWhUzxmmhig+gMAAADsFALQDljI+3r54oJevrSo48f2ysw0lyvq5uFeJeO8BAAAAMBO4ep7B0zP5/TdFy8rnYjpA3eOKwhLo4FPDlH9AQAAAHYSAajJvCDUK5eX9INXrup9t+9RXzqhhYKnfcO9SifirW4eAAAA0FUIQE02u+zp+y9fVtEPdfyevXLOyQ+c9g31tLppAAAAQNchADXZ+ZklfffFy7pjol+37unTfN7X3qGMelJUfwAAAICdRgBqorwX6Ae/uKYLc3mdKFd/vCDQgeHeVjcNAAAA6EoEoCa6uljQt1+4pP5MQu++bUxLhUB7+tPKpps6/RIAAACABghATeKc0zPn5vTT12f04bsmlErElPd93TyabXXTAAAAgK5FAGqSxYKvR09Pyznp/mOTWi76Gu5NaSCTbHXTAAAAgK7FvVhNcmEmp++9fFlvOTisvYM9urqU1x2Tw61uFgBgJzlX+pKTXLiJx+XllWPD6vUulFwgheHqcuiX9gnL21bWRx6bSbLyd1U/rmxbWWer7Y/FVvevbK/dx2qPbXRuVR9rsTrHS2vPHVlnkW1112103FbPvZnjNnnueu0FsKMIQE0QhE5fOzWlmWVPJ45NKu8F6kslNdhD9QcAtl27hIzoVxhKCkrnNCs/t+o83vCHU+kiOnLMmiCywfLKBbdbfW650imjy6p9WG9bTYOrlmv2X3OeBs9Xtc3qbCuvi/7uVBsi6h1X2WTXee4G+1z3uWv3qVlXea0qz2Fa+xquPL/Whs81j7V6nNWe2+qcR1q5EWjDczcKwOu0uyrg1vwcq7+I+vus2W+Tx91wiN3iuQm1HYcA1ARzOU/feP6i9vSn9daDI5pZLuoN+wdl/A8CoFNdd8gIVy/6NhUyglKY2GrIiGoUMupdiJYauPb46w0ZsZikeE3oMC6M0Fht4KobJmv3rd2/9tgGwbbqdOs9b4O21T3X9bS7XtCstc7/Kxset9G567Rt285d5wOKaNWzdv26VVY1+NvR4O9P7XG1wXrdczcKzdF2xxrso/rPL0nxlNQz1OB31T4IQE3w5KtX9fzUgj71joPyw1A9qbiGe1OtbhaATuRcqfoQBpFQsE0ho1LVIGQAO2/NBWTLWoLt1DDYbjJoRivV0W3hJsJo3edd7/nWCcibandZ5e++c1IqKx1619pj2gwBaJsV/VB/8dPzSsRMHz46ocWCr6N7BxSL8ZcN6GphOXyEfumrEkbCQAqKUuBJQUHyi6XvgVdaH/qRk0Q+aSNktA/nyq+nX3rdKq9xUP4eNli38jiyT3Rd9FyN1gW15/fK76vIOkml1zBWfq3L31WzbLHN7beyHN/a8c3Ybyefq9F+sdj2nRedq5uDbeCV/g3rAASgbXZhZlmPn7miX7l1TNl0Qjkv0GhfutXNArAdotWY2hAT+pHwUix9+YXyRWlx9VO9aLVEWv3HMRYvX1DGSxdS8aSUSJfWd5NoSAzLF/PBBhf4teuCyLH11lWFiE2ua/i80ZDRJBYvvR9iidJXvPw9VmddPCWlEpJF1ski1cEwUiF0ktZZrlQF6x1XqRBu5pxb2a/b3VAga1L4u+7jCMjX/TvBjiEAbbOHnzqrXDHQiXsmNZ/3dPt4v+JUf4D2Eg0tlU/ut1qNkbSSaGKRAGPx0j9qyUzploCd/sdtJaxdzwX+OtWGG61mbLbC0cyLX4utBoZYojpUrISIyLpk79p18WTpda6sW9neYF3Vc9RZV3u+euu68cJo08EpvLGgtV377eRzrbtfsLXzbjb4brY9Ww3I3W6nAlklFG538JWTRm+XDr+7Rb/AzSMAbaOlgqdHTk3r0Giv7pjo12LR154Bqj9AU1xvNWYl2BRX/6FdqcaYJKcdq8aEgeQtS8Wl1e/FZam4WGd9eZu3tBrCaiscVeGkHGxcsD1tbeR6LvATKSmW3fxF/3oVjqrt66yrDTexRPdV0zpZ5dNydJdtD40E5HUDcjOCb6wzokVntLJDfP+lK/rltWX90/feqvm8p8NjWSXjsVY3C2hvdasx4eqtY7XVmNBfvbVsRaNqTCwSZrahGrPV4FK7j5/fxJNZqQKRykqp3tLjRFpKZDZ/0b9RhaN2XbwmVDSqZlRu4wCA7UTw7Wz0Aeo+zjn9+ROvK5OM6T1HxlQMQk0MZlrdLGBnbEc1RpJWhu9cpxoTS0jp1PV9ml8JLrnagLK0QXCp2WezwSXVKyXLwSWVldJ9Uv9k9fpkdjXcpLLlsNO3ui2Z0eoQpOg6VSNBuTrrVnaMrC8vR/epN1pTrap1dR5XHRJZqO3svZlz1g3OG5yTsA1gmxGAtsnrV5f1w1eu6iNHJ+U7p/3DvUon+BQDHWbdakw5sNStxpSHVpa0cTWm3D9mM9WY0Je8XCSELJarKTWBJVqN2bbg0idlBqT+vWsDSzTcpLLVoYbgsnPWCwkrj6XNhYTodjU4b60GF/6uvKk2qGxk5ZZMV34PxaRY+UOByn33sUad3ivra9ep/L1OcKr8XNGfv2pdg99F3d9d9Od1pb8btcc3ev41r0f091Ub+mx1m1n9gLfuusjxqzs0OKc1WLfZ4zf7/NJ1H9/w72akzbXrqh5eR0Cte65659zE8693zi3/TARkXD8C0Db58o9/KT9wuv/uCfmB077hnlY3Cd1qo2pMZXSyTVVjah5uthqzpeBSZ5/rDi7lr2hwqQ0oqZpKy24PLg1DglR9YXkdIaGyeUshwSLXgLX7bxQSKsdWLhYrww6rOgRcV0iIBIyqr9p1tnps7SSEFr1Aq92nzveN9uWCrrG6lS23dnvddZH1LTt+u88ZDZf1AmrlPw1Ca9X/950WkOude5sCaqPQurLetuH4RqHb1fkxrvf4zVZaI+vrBdmq7Q3+LkX/FoaBOuUWRgLQNih6gf7r0xd0dO+ARrJp7elPKZPsjDcA2tiNVmNWPk2uKC+sV41xwWpwKS5F+q80Mbik+lb7uqwElzqBpao/TKQak+hp/wvGDTvi1myT1v4ju3qyxs8TrSCsrKtz0b9eSKhdt2bf6wgJlTZdd0jQxvu0+2uO5qh6HwE12jkgb3hONVjXYQE51b/252lDBKBt8Ohz07q0UNCn3nlQXhBo/3Bvq5uEZnG1fwwqf1zCteuiF7m1f1xcWFON8SJ9ZDaoxlTCTbQaI1c6j5eX/Fx1cGnUz6VeuNlMcLHYahhZCS6DdYJLtnqf2mpMOwWX6GtYCZD1RsEJo6+ztHIx3vBWp8qncfHV16tqIIL46qAC0UEIKoM2VEJFJayu3AqlzQWJdvn9AsBOICBjkwhA2+DLP3pdgz1JvXHfkEb6U8qm+bVumtsoQGy0rc66ykVs9JP1MFBpGMfyVxhq5YLWVR4H1c9Xta383dWWtqOsfvW9sk0NLpL9Qil4+PlSgAnK39cEl8WaUcUi4Wa7gku00pKM9HGJVmNaEVzWrZzUG6ZTpX1rKyhmNcGysj4WCSLlr3h6dSS1SkCpBJZYonEVJBZX3UoJAABoC1yp36BfXF7Uk69d099/y375LtSBkQ6v/oRhzYVl9CtYe+EZVPqaVCY0rLllqyqA1N7uUztPSSVA1CYIW2dbZJew3MYwKH+vXa79Xgk9fvW2RhNkVq2rneSxzu+g3lflGC+3teBSCSZVwaW20pKtf7tYItPcC/F6cy5UBZPa+QcqL9yaE5U3RYJmZWjUlQkn46UZ76uCSXRY6HohpM7Xyn4EFAAAugUB6Ab93z94TZL03tv3aLg3pYFMsrlPGA0gVVWO2ovPYHWf6AV65QK89uJ+JQSUPx2vXBDW64dQuUXLz6/ethW9jWulT0qg+p3x/ZqgcJ3hoWo/r/qYnbByER6dvLF2wsXIV6JnbfUg2Vsz/HG928XK1ZjtCi4r75maINpo0rYVkT4Z0ft8o1YCSiV8xEtz1lhi7c9emU+mbl+SBsEltgsHJwAAAC1BALoBhfLgB289OKxsOq5DY9k6t+bUCyvRfcqzttdWGKpmeo9WLiKdpFfU9EMIg3IQyVeP9OVXgkphdTnIl2/BqtyGVVi9Fcsv9yep6luSr1O5uQ51Q0J05vjKhXI5WKxM+lg74WPN8dFjGgWRNcfUPOeGYabS56ZJ1YJGHeW95frbVo5reMLqRav8rsu3esVTdX4X0X4pNRWSNcEkTkABAAAdhwB0A77y09c0l/P0wOSsbrr2hAYTvZFPzqN9PmovmN1q0FgJIpWvSAWlEkyij/1COZREQ0pNYAm86/tBLFYKGol0qVqRzJSWkxkpPRBZ7qm/X2XfRHS/dCTUJJsfHiSt6Qe0Zp3qbK/8p94IKOV1lQpX3ZFY1uv307ChNcuVTpsxVXWUt4SUiISyzXaUb/jFbV4AAAAEoK3yC7r6vS/qn2Vm9f55T2NFk50rRiopNZWTqpASuZjerEq4SKQjQSQj9Y5EtkXCR1VgqQkpyUwpwFT2i6c2d3HcsCN6pH9H9HaqoFzJUrSfS53nuZGJAyvnNKk0H0hl5KvorVWVPkSRasWa4YArVYzIcMEr62rmGWk4J8g6Q/3WW7cmsBBQAAAAmo0AtEXTc8v67NKflhZekVw8WQ4VNSEl0y/F9zQOH5X9ohWUNctpbXqCxrq32TXo5xF4kWrRBv08Vi7sa0bDWtMRPRHpjB5XVSjYTFDY6twghAcAAABsAgFoiyZHhvT6b35fZ198WncduU0j/T2bO3Az841E+w5VhjpeM6mlFCmbrK6K3iZ1w/08aioU9PMAAABAhyMAbZWZhvbsU2HqBQ3akrS0XGcf1dzSJW3bfCMN+3tQCQEAAAAaIQDdgN5sv/YefafimXRNSGk0lG+TBwEAAAAAsC4C0A1IJFPqGzvQ6mYAAAAA2CQ6dQAAAADoGk0NQGZ2v5m9aGZnzOzzdbabmf278vZnzOwtzWwPAAAAgO7WtABkZnFJX5B0XNJRSZ80s6M1ux2XdKT89RlJ/0ez2gMAAAAAzawA3SfpjHPuFedcUdLDkh6o2ecBSX/mSn4kacjM9jaxTQAAAAC6WDMD0D5JZyPL58rrrncfmdlnzOwpM3vq8uXL295QAAAAAN2hmQGo3njPtVN5bmYfOececs7d65y7d8+ePdvSOAAAAADdp5kB6Jyk6BjR+yVd2MI+AAAAALAtmhmAnpR0xMwOm1lK0ickfaVmn69I+lR5NLh3SJpzzk01sU0AAAAAuljTJkJ1zvlm9jlJj0mKS/qSc+5ZM/tsefuDkk5KOiHpjKRlSb/TrPYAAAAAQNMCkCQ5506qFHKi6x6MPHaSfreZbQAAAACAiqZOhAoAAAAA7YQABAAAAKBrEIAAAAAAdA0CEAAAAICuQQACAAAA0DWsNBBb5zCzy5J+2ep2RIxJutLqRqDj8L7BVvC+wVbwvsFW8L7BVrTT++agc25PvQ0dF4DajZk95Zy7t9XtQGfhfYOt4H2DreB9g63gfYOt6JT3DbfAAQAAAOgaBCAAAAAAXYMAdOMeanUD0JF432AreN9gK3jfYCt432ArOuJ9Qx8gAAAAAF2DChAAAACArkEAAgAAANA1CEBbZGb3m9mLZnbGzD7f6vagM5jZl8zskpmdbnVb0BnM7ICZfcfMnjezZ83s91vdJrQ/M8uY2RNm9vPy++Z/bnWb0DnMLG5mPzOzr7a6LegcZvaamZ0ys6fN7KlWt2c99AHaAjOLS3pJ0oclnZP0pKRPOueea2nD0PbM7D2SFiX9mXPuWKvbg/ZnZnsl7XXO/dTM+iX9RNLH+XuD9ZiZSco65xbNLCnpcUm/75z7UYubhg5gZv9M0r2SBpxzH2t1e9AZzOw1Sfc659plItSGqABtzX2SzjjnXnHOFSU9LOmBFrcJHcA59z1J11rdDnQO59yUc+6n5ccLkp6XtK+1rUK7cyWL5cVk+YtPPLEhM9sv6aOSvtjqtgDNQgDamn2SzkaWz4kLEgBNZmaHJL1Z0o9b2xJ0gvJtTE9LuiTpG8453jfYjH8r6X+UFLa6Ieg4TtLXzewnZvaZVjdmPQSgrbE66/hkDUDTmFmfpL+U9AfOuflWtwftzzkXOOfeJGm/pPvMjNtusS4z+5ikS865n7S6LehI73LOvUXScUm/W77tvy0RgLbmnKQDkeX9ki60qC0AdrlyH46/lPTnzrm/anV70Fmcc7OSvivp/hY3Be3vXZL+Trkvx8OSPmBmX25tk9ApnHMXyt8vSfprlbqMtCUC0NY8KemImR02s5SkT0j6SovbBGAXKndm//eSnnfO/ZtWtwedwcz2mNlQ+XGPpA9JeqG1rUK7c879S+fcfufcIZWubb7tnPuHLW4WOoCZZcsD9cjMspI+IqltR7wlAG2Bc86X9DlJj6nUIfn/dc4929pWoROY2X+S9ENJd5jZOTP7dKvbhLb3Lkm/pdInsU+Xv060ulFoe3slfcfMnlHpQ7tvOOcY0hhAs0xIetzMfi7pCUlfc8492uI2NcQw2AAAAAC6BhUgAAAAAF2DAAQAAACgaxCAAAAAAHQNAhAAAACArkEAAgAAANA1CEAAgLZkZkNm9t+VH99kZn/R6jYBADofw2ADANqSmR2S9FXn3LEWNwUAsIskWt0AAAAa+ENJt5rZ05JelnSXc+6Ymf22pI9Liks6Jul/l5RSacLYgqQTzrlrZnarpC9I2iNpWdI/ds69sPM/BgCgnXALHACgXX1e0i+cc2+S9D/UbDsm6Tck3Sfpf5W07Jx7s6QfSvpUeZ+HJP2ec+6tkv65pD/dkVYDANoaFSAAQCf6jnNuQdKCmc1J+v/K609JeoOZ9Un6FUn/2cwqx6R3vpkAgHZDAAIAdKJC5HEYWQ5V+rctJmm2XD0CAGAFt8ABANrVgqT+rRzonJuX9KqZ/QNJspI3bmfjAACdiQAEAGhLzrmrkv7WzE5L+t+2cIrflPRpM/u5pGclPbCd7QMAdCaGwQYAAADQNagAAQAAAOgaBCAAAAAAXYMABAAAAKBrEIAAAAAAdA0CEAAAAICuQQACAAAA0DUIQAAAAAC6xv8Pl3MC/9u6dHMAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "#SK482_time_PCB & SK482_time_BV\n", "plt.figure(figsize=(14,7))\n", "plt.rcParams['pdf.fonttype'] = 42\n", "sns.lineplot(data=df2[(df2[\"strain\"]==\"SK482\")&(df2[\"condition\"]==\"time\")&(df2[\"chromophore\"]==\"PCB\")], x=\"time\", y='ratio',ci=\"sd\")\n", "sns.lineplot(data=df2[(df2[\"strain\"]==\"SK482\")&(df2[\"condition\"]==\"time\")&(df2[\"chromophore\"]==\"-BV\")], x=\"time\", y='ratio',ci=\"sd\")\n", "#plt.savefig(\"20211005-SK482-time-course-1.pdf\")" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0AAAAGpCAYAAACkt1YhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXDk533n9/fTx6/vxg3MheFweA1JSRxJI0qmbtL20o4d2VnHkb2Oy16XtYrXW5ukktr9L1XZf7y1lWRVtrZUWsfZ2kolqlTi3XUShZI91GlZtiiLlHgMybmBmcF99fnr3/Hkj183poEBBseggQb686piYQD0YB6SM5j+9PN9Po+x1iIiIiIiItILYge9ABERERERkf2iACQiIiIiIj1DAUhERERERHqGApCIiIiIiPQMBSAREREREekZiYNewE4NDw/bM2fOHPQyRERERESkS/3whz+cs9aObPS5QxeAzpw5wyuvvHLQyxARERERkS5ljLmx2ec0AiciIiIiIj1DAUhERERERHqGApCIiIiIiPQMBSAREREREekZCkAiIiIiItIzFIBERERERKRndDQAGWNeNMa8bYy5bIz5pxt8vs8Y838bY14zxrxhjPntTq5HRERERER6W8cCkDEmDnwR+DngKeDXjDFPrXvYPwTetNY+A3wK+B+MMU6n1iQiIiIiIr2tkztAzwKXrbVXrbUN4CvAZ9Y9xgIFY4wB8sAC4HdwTSIiIiIi0sM6GYBOAhNt7082P9buj4AngdvAT4B/bK0N138hY8znjDGvGGNemZ2d7dR6RURERETkiOtkADIbfMyue//vAK8CJ4DzwB8ZY4r3/CRrv2ytvWCtvTAyMrL3KxURERERkZ7QyQA0CYy3vX+KaKen3W8Df2ojl4FrwLkOrklERERERHpYJwPQD4DHjDEPN4sNPgv82brH3AReADDGjAFPAFc7uCYREREREelhiU59YWutb4z5feBrQBz4E2vtG8aYzzc//yXgnwH/xhjzE6KRuX9irZ3r1JpERERERKS3dSwAAVhrvwp8dd3HvtT249vAz3ZyDSIiIiIiIi0dvQhVREREDk6tEbBYaVD3goNeiohI1+joDpCIiIjsnzC0lBs+i+UGUyt1as3gYwAnEWMw5zCQc8g5CbJOnOgaPhGR3qIAJCIicoh5QchKzWOu7DJbcvFDS8wY8qkEWefuX/N+ELJQ9rizXMcAMWPozzkMZR3ymQQ5J0E8pkAkIkefApCIiMghU2sELNcaTK/UWax6ADjxGPlUctMQk4jHyMdj5Jt/9Qehper6LJRdLGAMFNJJhnMOxUySrJPASWhSXkSOHgUgERGRLnfPaFsjwBhIJ+MMZp1djbLFY4asc3eXyFqL64fcmK8SWosFMsk4Q3mH/mw0NpdOxjQ2JyKHngKQiIhIF/KCkFLdZ7ZUXzPalnMSDOX3/q9vYwzpZJx0Mr5mDdPLLpOLNQASsRiD+SRDWYdcOkk2GSemsTkROWQUgERERLpErRGwUot2eRarHgZIbjHa1knJeIxk5u4YXBBaVqo+MysuEJ0j6sskGcw5FNNJsqk4ybjG5kSkuykAiYiIHJDWaNtSpcHUcp3qHoy2dVI8ZsilEuRS0dOH0FpcL+T6XGV1bC6fSjCUd+jLOGSdtTtKIiLdQAFIRERkH7VG2+bKLjMr9Y6PtnVSzBgyTpyMczfkuH7ArcU6N+arAKQSMYbyKQayDrlUnExS9dsicrAO13daERGRQ6g12jZdclmoNICtW9sOq1QiTiqx9hzRfKnB7aVaVL8dMwxkHYZyDrm06rdFZP8pAImIiOyx9tG26ZU6FTcAE7WqdeNoWycl47HoHFNb/XbF9Zlv1m8DFDOq3xaR/aMAJCIisgfWjra5+GFI3ERV04dttK2TNqvfvt5Wv51LxhnMOwxkHbKq3xaRPabvyCIiIrtU9wKWq9Fo22K1gbWQjMXIpzTWtV1b1W8bDIm4YTDnMJhNqn5bRB6YApCIiMg2WWspuz5LVY+p5dqa0baBTG+NtnXSRvXbS1WP6ZU62OgcUV8myXDeIZ9OknPiJFS/LSLbpAAkIiJyH37rQtJ1o20ZJ85QPnXQy+sJ8Zghn0qQX1e/fXVW9dsisnMKQCIiIuvUvYCVmte8kFSjbd1mff22tZZGEHJrsc7N+SoWSCfuniNS/baItFMAEhGRnnfPaFsjADTadlgYYzas354rudxeqoGFeNwwmHUYyjvkUlEJg8KsSG9SABIRkZ7UGm2br7hMLbv4QUg81hxty2m07bBr1W+3BGEUcuea9dsGQzGTYDifopBOqH5bpIcoAImISM9ojbZFF5K6Gm3rIZvVb1+bq2CtJWRt/XYulSCVUP22yFGkACQiIkdW+2jb9EqdsutjsWSTCY229biN6rcbfshUs34bC8lEjKGcw2AuCkQZ1W+LHAkKQCIicqRsNNoWixmyGm2TLTiJ2JoxOD8IWWzVbxOVL/RlkwzlVL8tcpgpAImIyKHXGm2bKbnMN0fbErFY8wlq8qCXJ4dUIh4jH49BW/12rRFwpRrVbwMUUslm/XaSbGptEYOIdCcFIBEROXSstVQaAYuVxupoG0TVx/0Zh5hG26QDYqZ1jih6v1W/PblY48Z8hdBGzYGq3xbpbgpAIiJyKPhBuNriNb3i4vkabZODtVX9tiEqXxhQ/bZIV1EAEhGRrtU+2rZQaRBae3e0La3RNuk+G9Vvl+o+s2UXiOq3+7IJhnIpiulobC6pc0Qi+0oBSEREusb60bZS3ceYaLStL5PUaJscOvGYIZdKkEttXL9tgZwTZzCXoj+bJJdKrGmmE5G9pwAkIiIH6p7RtiAkZgyZZJzhvEbb5GjZrH77znKdicXq2vrtvEPOUf22yF5TABIRkX1X9wJKdZ/plbpG26TnbVi/XfGYatZvx42hP+cwlHXIpROq3xZ5QApAIiLSca3RtqVqg6nlaLQNosYsjbaJrNWq385zt3676vosNl8sMAbyqSTDOYei6rdFdkwBSEREOiI6/O0xX24wtVLXaJvILm1Uv+36ITcXqgTWYi1knDhDOYeBXDQ2l07GVL8tsgkFIBER2TOt0bbZUp25skbbRDpho3NEXhAyW3K51Va/PZhzGMypfltkPQUgERHZtdZo23K1wdSKy0rNAzTaJrLfNqrfXqn5zJRUvy2yngKQiIjsSPto20ypjuuHGCDrJDTaJtIl1tdvh9bieiHXZiuEWADyqQSDOYf+rEPWiat+W3qGApCIiGzJ9QNWatFo23ylQRBGo21ZJ04+pdE2kW4XM4aMEyfjrK3fvr1U5+ZCFUPURjfYdo4o68R1jkiOJAUgERG5h7WWaqu1bcWlVI9G21KJOMW0RttEjoKN6rcXyh53lu+t385nEmSTqt+Wo0EBSEREgGi0rVyPLiSdKdVp+CEQjbYN5TTaJnLUra/fDsKofnuh7GIBY6CQTjKUVf22HG4dDUDGmBeBLwBx4I+ttX+w7vP/LfD32tbyJDBirV3o5LpERCTi+lFr28zK2tY2jbaJSDzWqt+Oni6212+H1mKJCk+G8tE5ItVvy2HRsQBkjIkDXwR+BpgEfmCM+TNr7Zutx1hr/wXwL5qP/0Xgv1L4ERHpnNZo23LV485Kfc1om1rbROR+Nqvfnl52mVioYQwkYjEG89EuUS6dJJuME1P9tnSZTu4APQtcttZeBTDGfAX4DPDmJo//NeB/7+B6RER6Umu0bb7iMr1Sx/VCjNFom4g8uGQ8RjKzrn676jOzEtVvx4yhL5NgUPXb0kU6GYBOAhNt708CH97ogcaYLPAi8PubfP5zwOcATp8+vberFBE5glqjbbMll9mSq9E2EdkXm9VvX5+rEFpLCBRSCYbyDn0Z1W/LwehkANpov9Nu8thfBP5ys/E3a+2XgS8DXLhwYbOvISLSs9pH26ZKdZZrHgaNtonIwdqoftv1A24t1rkxXwUglYgxlE8xkHXIpeJkkqrfls7qZACaBMbb3j8F3N7ksZ9F428iIjvSGm1bqLpMLUejbRjIOQmGNdomIl0qlVjbHucHIfOlBreXahggFjMMZB0Gm/XbOSdBXOeIZA91MgD9AHjMGPMwcIso5Pz6+gcZY/qATwK/0cG1iIgcCQ0/ZKXurRlti5to5ESjbSJyGG1Uv11xfeab9dsAxUyS4VyzfttJrLm/SGSnOhaArLW+Meb3ga8R1WD/ibX2DWPM55uf/1Lzob8MfN1aW+nUWkREDjNrLYtVjxvzFZZao23x6EJSvSoqIkfNZvXb1+er2Gb9djYZZ1D127JLxtrDdaTmwoUL9pVXXjnoZYiI7IvlqseVuTIrtQaZZEKz8SIiRPXbtUaAF4YYDIm4YTDnMJhNqn5bADDG/NBae2Gjz3X0IlQREdmdUt3j2lyFubJLzkkwlEsf9JJERLrGRvXbS1WP6ZU62OgcUV8myVDeoZBOknVUvy13KQCJiHSRiutzY77C9IpLOhFnJK/gIyKylXjMkE8lyK+r3742G9VvWyCv+m1pUgASEekCdS/g5kKF20t1ErEYQzlHo24iIruk+m25HwUgEZEDFP2FXOPGQpVEs/pVd/aIiOy99fXbXhAyV3K5vVQDC/G4YTDrMJR3yKZUv32UKQCJiBwALwi5s1Tj+nwFa2Eg4+gvWhGRfZSMx9acCwpCS9n1mWvWbxsMxUyCIdVvHzkKQCIi+ygILdPLda7OlQlCS5+Cj4hIV7hf/XbrHFGuWb8djc0lSCVUv30YKQCJiOyDMLTMlV0uz5Zp+CHFdFKNRCIiXcwYQzq5tiyh4YdMLbtMLtZUv32IKQCJiHSQtZaFSoPLM2Wqnk8x5VBIJQ96WSIisgtOIrZmDK69ftsQlS8UM0mG8w75dJKcEyehF7u6jgKQiEgHWGtZrnlcni1TqvnkUwmGdZePiMiRslH9dt0LuNKs3wYopJLN+u0k2dTaIgY5GApAIiJ7bKXucW22wnylQc6JM5xPHfSSRERkH8RM6xxR9L61lkYQMrlY48Z8BQukE+3niFS/fRAUgERE9kjZ9bk+V2a21CCdjDOi4CMi0tOMMTuq386lohIGleN0lgKQiMgDqjUCbixUuLNUw4nHdYmpiIhsaqP67VLdZ7bsAlH9dl82wVAuRTGdJOPEVb+9xxSARER2qe4FTC7WmFio4iRiDOVSCj4iIrIj8Zghl0qQS62t3742V8G26redOIO5FP3ZJLlUYk0zneycApCIyA41/LuXmMZMVIEaU/AREZE9sFn99p3lOhOLVbCQTMQYyjkM5h1yToKM6rd3RAFIRGSb/CBkaqXOtbkKQWjp1yWmIiKyD9bXb/tByGLFY6qtfrsvm2Qop/rt7VAAEhHZQhBaZlfqXJmr4AUhfemk/mIREZEDk4jHyMdj5Llbv11rBFypRvXbxkDeUf32ZhSAREQ2EYaW+YrLlZkKdT+gmE5STOsSUxER6S4b1W+7fsjEQpXr1mItZJyopGcgF43NpZOxnj23qgAkIrKOtZbFqsfVmTIrrk8xnWAopUprERE5HDY6R+QFIbMll1tLNQxR+cJgzmEw13v12wpAIiJtlqseV+bKLFcb5Jyk7vIREZEjYaP67ZWaz0xp4/rtbCq+5vFHiQKQiAhQqntcm6swV3bJOQmG8+mDXpKIiEjHbFS/XfdCrs1WCLEA5FMJBnPROaKjVL+tACQiPa3a8LkxX+XOUo1MMsGIgo+IiPQgYwwZJ07GWVu/fXupzs2FKoZoF2kof/cc0WGt31YAEpGeVPcCJhaq3FqqkYjFGM7rElMREZF2G9VvL5Q97izXAYgbQ3/OYSjrkM8kyB2Sc0QKQCLSU1w/4PZSjRvzVeIxw0BWl5iKiIhsx/r67SC0VF2fhbKLBfozSc6fHjjYRW6DApCI9AQvCJlarnN9LrojQZeYioiIPJh4rFW/ncALQup+eNBL2hYFIBE50oLQMr1c5+p8GT9Q8BEREel1CkAiciSFoWWu7HJ5tkzDDymmkyTTR7POU0RERLZPAUhEjhRrLQuVBpdnylQbAcV0kkIqedDLEhERkS6hACQiR8ZStcHl2TKlmk8+lWBYl5iKiIjIOgpAInLordQ9rs1WmK80yDlxBR8RERHZlAKQiBxaFdfnxnyFqRWXTDLOiIKPiIiIbEEBSEQOnVoj4OZChdtLdZx4jOGco0tMRUREZFsUgETk0HD9gImFGpOLVRIxw5CCj4iIiOyQApCIdD0vCLm9WOP6fAVjDANZh5iCj8imgtAyX3GZLblknQQn+zM4CdXAi4iAApCIdDE/CJlaqXNtrkIYWvp0iakIEAWcxWqD6ZU60ysuM6U6Mytu9H6pzly5QRDa1cfHDIwV04wPZBkfzDI+kGF8MMupgQxZR08FRKS36LueiHSdMLTMrNS5MlfBC0L60kkScb16Lb0jtJbFSoPpksvMSp3pUhRuZlbqzJSinR2/LeAADGYdRospnhgr8onHUowW0owWUpRcn4nFKpMLVSYWa/ztzcU1P3c473Bq4G4oaoWkvozuzxKRo0kBSES6hrWWubLLldkKdS+6xLSY1pMwOXqstSxWvdVwM7NSb+7euKshZ33A6c8mGSukeXQ0z3OPDDNWTDFWSDNaTDFSSJFKxLf1a7d2VicWa0wsVJvhqMafvzVN3QtXH1dIJzg9mL0bjprBaDivs3cicrh1NAAZY14EvgDEgT+21v7BBo/5FPAvgSQwZ639ZCfXJCLdx1rLUtXjykyZUsOnkEowlFOltRxe1lqWah4zzfG0qZX66o+nV6IdnEYQrvk5fZkko4UUD4/k+alHhqIdnGbIGSmkSCe3F3C2kojHODUQBZufOju0+vHQWuZKbhSMFqvNcFTje5fnKLn+6uMyyTgnBzKcHshyarAZjAayHOtLa0RVRA6FjgUgY0wc+CLwM8Ak8ANjzJ9Za99se0w/8K+AF621N40xo51aj4h0p+Wax9XZMkvVBjknybCCjxwC1lpW6n40ltYcT2v9uLWr0/DXBpxCOsFYIc2ZoSzPPjzIWCHFaDEaUxsrpvcs4OxWzJhoPcU0H3xoYPXj1lqWa95qIGqFo1cnl3j57ZnVxyVihpP9GU4NZjm9esYoqwIGEek6ndwBeha4bK29CmCM+QrwGeDNtsf8OvCn1tqbANbamXu+iogcSWXX5/pcmZmSSzaZYDifPugliayy1lKq+/eEm/YxNXddwMmnEowWU5wayPLBhwYYLaSjMbVitINzWMsGjDH0Zx36sw7vPdW/5nMV12eybZRuYrHK1dky37s8R2uAb20Bw91ROhUwiMhB6eR3npPARNv7k8CH1z3mcSBpjPkmUAC+YK39t+u/kDHmc8DnAE6fPt2RxYrI/qg2fG7MV7mzVCOdjDOi4CMHwFpLxQ2i0bRWg1pbk9pMyaXmBWt+Ts6JM1ZMc7I/zfvH+1fDTatsIJfqvSfzuVSCJ44VeOJYYc3HXT/g9lKNiYW143TrCxiGcs6aVjoVMIjIfujkd+uNBoHtuvcTwAeBF4AM8FfGmO9ba99Z85Os/TLwZYALFy6s/xoicgjUvYCJhSqTizWS8RjD+ZQOUktHVVz/nmKB9t2camNtwMkk44wVUxzrS/O+U31RuCmmV0fV8j0YcHYrlYjz8HCeh4fzaz4ehJY7yzUmFmvNVroqE5sUMKyp7G6eNxrR9w0R2QOd/G4+CYy3vX8KuL3BY+astRWgYoz5NvAM8A4iciQ0/JBbS1VuzFeJxwyDOV1iKnuj2vBX78CZXt25ububU3HXBpx0Mrbamvaek32rP26NquVTCT257rB4zKwWMLC+gKHsru4YTW5RwLBmx0gFDCKyQ50MQD8AHjPGPAzcAj5LdOan3X8A/sgYkwAcohG5/6mDaxKRfeIFIVPLda7PVQitpV+XmMoO1RrBariJ3q699LP9iTFAKhFb3bF58nhxtVyg9baQVsDpVjFjmqOEmxQwLNaYXKxys7mL/OPJZb7x9uzq49oLGMYHMqv13SpgEJGNdCwAWWt9Y8zvA18jqsH+E2vtG8aYzzc//yVr7VvGmJeAHwMhUVX2651ak4h0XrB6iWkZP7C6xFQ2VfeCu61p7ffhNN+u1NcGHCcei2qhi2keHyusCTdjxTRFBZwjZ00Bw8m+NZ9bLWBYrK6Go60KGE4NZFd/rAIGkd5lrD1cR2ouXLhgX3nllYNehoisE4atS0zLuH5IMZ0kqeDT01w/WD13034HTuvtcs1b8/hk3KyOo7XuwDnWKhkopujPJBVwZEv3FDA0W+puL9XuW8BwaiDLaRUwiOyaF4Q0gpCPtI23HiRjzA+ttRc2+pxe/hCRB9K60f7yTImKG1BMJ8mn9ASiFzT8kNnVaui1IWe6VGepujbgJGKG0WahwEcezt1TMtCfTep8mDyw+xUwTC3Xubl6xigKR5sWMLSdM1IBg8jRogAkIru2VG1webZMqeaRTyUZzusS06PEC+4GnJn1b1dcFqqNNY9PxAwjhRSjhRQfOjMYjaY1w81YIcWACjDkAMVjhpMDGU4OZDYsYJhcV9n9vSvzlN6cXn1cOhlrjtC1WumynFYBg8ihpAAkIju2Uve4NldhruSST+kS08PKC0Lmyu49d+C0zuAsVBpr7i6IGRgppBhrHlRvb1AbK6YZyKroQg6f9gKGD9yngKEVjDYqYDjRn1lT2T0+mOFkf1YFDCJdSgFIRLat4vrcmK8wteKSScYZLSj4dDM/CJmrNKI7cFZcpkr1tvtwXBYqLm1HIogZGM5HYeb8eP+akoHRYoqhXEoBR3rGTgoYJhZqXJ0t81dX5lb/TLUKGE61tdKpgEGkO+hPoIhsqe4F3JivcHupjhOPMZxzNAvfBYLQMl92mV4dS1t76edc+d6AM5SPRtTed7JvtVGtNaY2lHPU2CeyDblUgieOFXjiWGHNx6N7z+5WdrcufP3RzaUNCxjWhqMMfSr6ENkXCkAisinXD1bn4hMxw5CCz4Fo+CGv3Fjgxnx19Q6cqZX6PQHHAEN5h9FCmqdOFBlrNaoV04wV0gzlHTXziXSQk4jx8HCOh4dzaz7eKmCIihfujtP9xfoChlRidZSudcZIBQwie08BSETu4QUhd5ZqXJ+vAEaXmB4Aay1vT5W4eGmG71yepeIGAAzmHMYKKZ46XmS0fUStkGKkkFLAEelC7QUMH+FuAYO1ltn2AoZmZff3rm5QwNAfjc+1ChjGBzIc78voe7PILigAicgqPwiZXnG5NlcmCC19Cj77brbk8o23Z3j50gy3lmqkEjGee2SIF86N8eTxog5VixwhZpMCBiAqYFhYu2P0k1ubFDC0VXargEFkawpAIkIYWmZLda7MVXC9kL6MLjHdT3Uv4PtX57l4aYbXJpawwNMnivzKB07x3KNDOjAt0oP6Mkn6TvbxnnUFDNVGs4BhNRzVuDpX4a+uzq+OxBrgWF9UwBCFIhUwiLTTnwKRHmab919cma1Q83yKKYeCLjHdF9Za3ryzwsVLM3z33TlqXsBYMcVnPzTO8+fGONanhj0RuVfWSfD4WIHHxzYvYJhYqHJzkwKGwZzTLF7IrLnwVQUM0ksUgER6kLWWparHlZkypYZP3kkwnNMT7v0wvVLn5UszfOPtGe4s18kk43z00WjE7akTRV0UKiK7cr8ChumVerOVrsrkQo2bi1UuvjVDzQtWH1dIJZrFC5nmGaMoHA0XUvq+JEeOApBIj1mueVybLbNYbZBzkgznUge9pCOv1gj43pU5Ll6a4Se3ljHAe0/18dkPnea5R4ZIJ+MHvUQROaLizXNCJ/rvLWCYKzfWnDGaXNy8gOHUYKbZSqcCBjn8FIBEekTZ9bk+V2am5JJNJhjOa8enk0Jref3WMhcvzfC9K3PUvZDjfWl+48On+fQTo4wW9d9fRA6OMYaRZnvkB05vXcDw+q1lvrlJAUOrsnt8MApaqYRe1JHupgAkcsTVGgE3FircWaqRSsQZUfDpqDvLNS5emuEbl2aisOnE+eRjIzz/5BhPHitoxl5Eut72ChiitxsVMIwV06uV3ePNu4zGB7LkUnraKd1BvxNFjqi6FzQPw9ZIxmMM5XSRXqdUGz7fvTzHxbdmePPOCgZ4/+l+fvOnzvCRs4N6NVREjoT7FTDcXqqt2TGa2KSAYU1ld3P3qF8FDLLPFIBEjpioCajKzfkqMWMYzDk6wNoBQWj58eQSL1+a4XtX52n4IacGMvzmTz3Ep58YZTivs1Ui0hucRIwzwznObFLAMLFY5eZCdfXC180KGNaHIxUwSKcoAIkcEX4Qcme5zvW5CoG19OsS046YXKyutrjNlRvkUnFeODfKC+fGeHwsr1cxRUSa2gsYPvzwxgUMk4tVbi5EBQzfvzrP19sKGFKJ2JoRulZAUgGDPCgFIJFDLggtMyt1rsyV8QNLXzpJQpeY7qmy6/Odd2e5+NYMb0+XiBn4wOkBfudjZ3n2zKBuXBcR2YHtFjBMLta4uVDdsIDheH9mTWX3aRUwyA4oAIkcUmHYusS0jOuHFNNJkmk9Ed8rQWj50cQiL1+a4ftX5/ECy0ODWf7+R8/wqcdHGcg5B71EEZEjZ7sFDJOLVa5tUsBwaiDD6UEVMMjm9LtB5JCx1rJY9bgyU6LsBhTSCfKp5EEv68i4MV/h5UszfPPtWRaqDQrpBH/n6WO8cG6MR0ZyGnETETkAOylgmFys8urEJgUMA9nmOSMVMPQyBSCRQ2S56nFlrsxytUE+ldRB+z2yUvP4zruz/MWlGS7PlInHDBceGuCFc6NcODNIUiOFIiJdaTsFDBMLdwPSxUtrCxjyqcRqIGoPRypgONoUgEQOgVLd49pchbmyS87RJaZ7wQ9C/vbmIhcvzfA31xbwQ8vZ4Ry/+/GH+cRjI/RnNeImInJYrS1guPtxay3zlUbUStcWjr5/dZ6v19cWMJzaoLL7eDGtc7ZHgAKQSBeruD435itMrbhkdInpnrg2V+biWzN8651Zlmoe/Zkk/9F7j/PCk6M8PJw/6OWJiEgHGWMYzqcYzm9cwDDZquxunjd6/dbKhgUM6yu7Tw6ogOEwUQAS6UJ1L+DmQoVbi3WS8RjDOUczyg9gqatTxDsAACAASURBVNrgW+/M8vKlGa7OVUjEDB86M8hPPznKB04P6NU8ERGJChgyfTx9YuMChvYdo+tzFb6/SQHD+GCW0ypg6Gr6PyLSRVw/4Faz9jMR0yWmD8ILQl65vsDFSzO8cmORILQ8Oprn8584y8cfG6GYUXGEiIhsbbMCBi8IubVYW63sbp0zem1yCS9oK2DIOow3w1D7ha8qYDg4CkAiXcALQu4s1bg+XwGMLjHdJWstV2YrXLw0zbfemaVU9xnMOnzmmRM8f26Uh4ZyW38RERGRbUjGt1/AMLm4SQFD2yhda8doRAUMHacAJHKAgtAyvVzn6lyZILT0KfjsymKlwTfenuHlSzPcWKiSjBs+cnaI58+N8v7xAf03FRGRfbNVAUOrrrt14etfX1vg629uUMCwrrJbBQx7RwFI5AC0LjG9PFvG9UL6MklVLe9Qww/5m+sLXHxrmr+9uUho4YmxAr/3qUf4+KMj5NP69iYiIt2jvYDh/ZsUMLRXdr9+e4VvvrNJAUNbOFIBw87pGYJIhwWhpeGHuH6A6wWUXJ+5coOa51NMORR0iem2WWt5Z7rMxUvTfPvdWSpuwHDe4e9+4BTPnxvl1ED2oJcoIiKyYw9awDBaTK0JRa2xOhUwbEz/VUT2QBhaGkGI64W4QUC57lNpBFTqHnU/BAvGgAWSsRjpZJxcTpXW2zVfdnm5OeI2uVjDScR4rjni9r5T/RpxExGRI+l+BQy3l2prRuk2K2A4NZhpttLdvfC1P9vbBQwKQCLbZK3F9cPVoFNr+JTqPhXXp+aFrUdhgUQsRjJuSCXi5LTDsyuuH/D9q9GI22uTS4QWnjpe5B89f5KPPTpM1tG3LxER6U3JeIyHhnL3lPu0ChgmF6NzRq0LXzcrYDi1rrK7VwoY9AxCpI210U5ONLIWUmsElFyPqhtQafhgo10cgLgxOIkYyXiMgWS8p19J2SvWWt6aKvHyW9N85/Ic1UbAaCHFf3phnOefGOVEf+aglygiItK12gsYnr1PAUPrwte/ubbAn29SwBCFo6NZwKAAJD3JC6KA0/CjnZxKI6BU86l6PkF4d+s4ZgxOvBlyMrqMtFNmSnW+cSkacbu9XCedjPHcI8O8cG6U95zs64lXo0RERDrlfgUMKzXvnsruDQsY+tJ3K7sHMpwezB7aAgYFIDmy/LaQU/cCyq5PyfWpuj5eaGk9pY5hSMZjJBOGYjqpJ9v7pO4FfO/KPBcvTfOTyWUs8N6TffzqhXGee2SYjHP4vqGKiIgcNsVMkqc3KGCoNYLVUbrWOaMb89VNCxhO9md44niBj5wd2v9/iR1SAJJDbaOGtYobhR0vCFdDjjGGRCwKOvlUUofmD0hoLW/cXuHlS9P85eV5al7AsWKaX3v2NM+fG2WsqGIIERGRbpBx4jw2VuCxHRQwLNc9fu9TB7PenVAAkq63WcNaue7hbtCwlozHyDkJhZwuMrVc5+VL07z89gzTKy6ZZJyPPRaNuD11vKjRQhERkUNiswKGuhedmz4MOhqAjDEvAl8A4sAfW2v/YN3nPwX8B+Ba80N/aq397zu5JulOu2lYSyfi5NWw1rWqDZ/vXZ7nLy5N88btFQzwzHg/v/Hhh/jI2SHSSY24iYiIHBXxmDk0Da0dW6UxJg58EfgZYBL4gTHmz6y1b6576Hestb/QqXVI91DD2tEXWstPJpe5eGma712Zx/VDTvZn+M8/8hCffmKUkULqoJcoIiIiPa6TMe1Z4LK19iqAMeYrwGeA9QFIjqAwtCzVPDWs9YjbSzUuXprhG2/PMFtyyTlxPv3EKC+cG+WJYwX9vxUREZGu0ckAdBKYaHt/EvjwBo/7KWPMa8Bt4L+x1r6x/gHGmM8BnwM4ffp0B5Yqe22x2uBHN5dWA44a1o6eiuvz3ctzXHxrmremSsQMnB8f4LefO8OzDw8eylpMEREROfo6GYA2eqZr173/t8BD1tqyMebngX8PPHbPT7L2y8CXAS5cuLD+a0gXml6pk0slyKcOxyyobE8QWl6bWOLipRm+f3WeRhAyPpjlt547w6ceH2EorxE3ERER6W6dfHY6CYy3vX+KaJdnlbV2pe3HXzXG/CtjzLC1dq6D65IO84KQ2bJLf8Y56KXIHplYqK6OuC1UGuRTCX7mqTGePzfKY6N5jbiJiIjIodHJAPQD4DFjzMPALeCzwK+3P8AYcwyYttZaY8yzQAyY7+CaZB+s1DysReNuh1yp7vHtd+d4+dI070yXiRn44EMDfO7jZ3n24UGS8dhBL1FERERkxzoWgKy1vjHm94GvEdVg/4m19g1jzOebn/8S8CvAf2GM8YEa8FlrrUbcDrnplbrOfxxSQWj525uLXHxrmr++toAfWs4MZfmdjz7MJ58YYSCrXT0RERE53Dp6QMNa+1Xgq+s+9qW2H/8R8EedXIPsL1/jb4fS9bkKFy/N8M13ZliqehTTCX7+vcd5/twoZ4dzGnETERGRI0Mn1GVPLWv87dBYrnl8651ZXr40zZXZCvGY4UNnBnjh3BgffGhAI24iIiJyJCkAyZ7S+Ft384OQV24scvHSNK9cX8QPLY+M5Pjdj5/lk4+P0JdJHvQSRURERDpKAUj2jMbfutfV2XI04vb2DCt1n/5skl943wleODfKmeHcQS9PREREZN8oAMmeWan7Gn/rIovVBt96e5aLl6a5Pl8lETN8+OFBXnhyjA+cHiAe0/8nERER6T0KQLJnplfqpOIafztIXhDyN9cWuHhpmh/eWCS08PhYns9/8hE+8dgwhbRG3ERERKS3KQDJnvCDkNmSqzMkB8Bay7szZV6+NMO335ml5PoM5hx++f2neOHcKOOD2YNeooiIiEjXUACSPbFS9wmt1fjbPpovu3zznVkuXpphYqGKE4/xkbODvHBujGfG+zXiJiIiIrIBBSDZExp/2x8NP+Svr83zF2/N8OpENOL25LEC//BTj/Kxx4bJp/RHWkREROR+9GxJHpjG3zrLWsvbUyUuXprhO+/OUmkEDOdT/MoHx3n+iVFODmQOeokiIiIih4YCkDwwjb91xmzJ5Rtvz/DypRluLdVwEjGee2SInz43xntP9em/t4iIiMguKADJA9P4296pewHfvzrPxUszvDaxhAWePlHk737gJB99dJisoz+yIiIiIg9Cz6bkgWj87cFZa3nzzgoXL83w3XfnqHkBo4UUn/3QOM+fG+NYX/qglygiIiJyZCgAyQMpafxt16ZX6rx8aYZvvD3DneU66WSMjz4yzAtPjvH0iaL+m4qIiIh0gAKQPJCZUh0nHjvoZRwa82WXH95c5Jtvz/KTW8sAvO9UH5/90Dg/dXaYjKNRQhEREZFOUgCSXQtCy0zJpZDS+Ntmqg2f12+t8OrEIq9OLDGxWAPgeF+a3/jwaT79xCijRY24yeastTSCkLoX4ochBoMxEDOGWPPt3fejj5m2tyIiIrKWApDs2krNIwitLtxsE4SWd2dKvDqxxKsTS1yaKhGEFice4+kTRX76yTHef7qfM0M5PTmVDflBSN0Pcf0AAGMg7yQ50Z8mn05gLXhBiB9Y/LD19u6P3cDiB5YgDLHNr9n6ndb+vm37NWOsC1ExMERvWx9rfV5EROSwUwCSXdP4W/Tq/J3l+mrg+fHkEpVGgAHOjuT4pfMnef94P08eL+Ikevu/ldzLWovrh9S9gNBGkSQRjzGQSzKYzZJLJcgk4yR2+ecsDC2BtYTWEoYQ2uh9G9L2cbsaprwwJAijEOYFliC0+EGIb6O3FrA2CmXYKEZZIGaij0MUrLRLJSIi3UwBSHall8ffVmoeP761zKs3F/nRxBIzJReAkUKK5x4d5v3j/bzvVL+a8eQeXhDieiFuEICFWMxQzCQYK2YppJNknDjp5N6dA4vFDDH2LmBYawlt9Oc/bAWo5vvW2ubHo6ClXSoREelWCkCyK700/uYFIW/eWeG1iSV+NLHElZkyFsg6cd57so//5P0nOT8+wIn+tF7NllWhtdS9ANcLsc2dknQyzlDBoT+bJOdEuzuxQ/RnyBhD3LCnf+63u0sVhM1QFd4NU54fPdb3Q4Jm6NIulYiIbEUBSHblKI+/WWu5Pl9dLS54/fYKDT8kZuCJY0V+7dnTnB/v5/GxQk8EQNmeRnOUrRGEGCAeN/RnHU4OJCmkot0djUHeS7tUIiKy3xSAZMeC0DJbcskfofG3+bK7eo7n1ckllqoeACf7M/zsk2OcP93Pe0/2kXX0R0aiPwN1L8D1g9UnwPlUgrG+FP1Zh6wTJ5OMa+fgAHTrLlUQWNwwwG8Gs/vtUq2GquaY5PodqfVhSrtUIiI7o2dzsmOluod/yMffao2A128v82pzrG1ioQpAMZ3g/Hh/858BRgqpA16pHLRWUYHrRzXU2KioYDCXZDCXJZtKkH2AogLpft26S+XtcJcqbgzx2N1/ErHYof4+LiKyWwpAsmMzJZdk7HA92QtCy+WZMq9ORMUFb0+V8Jv11E+dKPLT50Y5P97PmeGcxlN63JqiAqIRpkImwalChmImSdaJk0rE9Iq77Np+7VK1fhw0W/xajYPRuGZI1fOjc1P2blBqvY0ZQ9wYEvFotynRDE36fS8iR4ECkOxIEFpmVuqHYvztznIt2uG5ucSPby1RcaMntGdHcnzm/AnOjw/w5PECqcTetW7J4RJai+uF1P1g9VX5dDLGYN5hIJsj26yh1qvk0u12u0tlbXNXad0uU8MPqDXPtNW9KDw13IDQRi8KWGxbaGrfVbr7Y72YJCLdSgFIdqSbx99KdY8fTy7zo4klXp1YZHolqqcezqd47uww58f7eWZc9dS9zAtCao0AL4yKCmLGUMwkOd6fppBOkHHiCsTSU4wxJOOGqH1969/7fvsZp+aPPb8VkgLqfkDDCym7zfNxdu3OUmuEdP04Xjf+nSIiR5cCkOxIN42/eUHIpTsrzcCzxOVmPXUmGed9p/r4pfMnOT/ez8n+jMY2elAQWlw/wPVDrI0OmWeTcUaLUVFBLhUnnThcNdQiBy0Rj7Hd1whapRBB+2W7zVG89nG8suvjh9FJpfVnmHRuSUQ6QQFItu2gx9+stdxcqK4GntdvLeO26qnHCnz2Q+OcPz3A46N5HUjvMdba1VEdPwwBSMQMA1mH8QGHXDpB1omT1O8LkX0ThZbtpaWwvTkvsM3QdDcouX50Nk/nlkRkLygAybYdxPjbQqXRrKde5LWJZRaqDSCqp/7pJ8c4Px7VU+dS+q3cS/wgpO5HIzcthVSSE/1p+jJJcqmEigpEDpFYzODEDA5bv0ix0bklLwzx/HDtuaXmj+93bimxbgxP55ZEeoOeNcq2zZZcEh0ef6t7zXrqm9Euz422eupnVuup+xktpDu6DukerRrquhcQ2GgwxonHGMw5DGSbNdROQmMxIj1ir84t1VqNeG3nlsINdpbWn1tq7TDpe47I4aUAJNsShpbpDoy/BaHlymw5Gmu7ucilZj11Mm546niRTz1xhvPj/ZwdUT11r/CC5tmAICoqMMZQzCQYK2YppJNknDjppIoKRGR79vLcUq0R4AUh1YZPELK6qwQ6tyRymGw7ABljngE+3nz3O9ba1zqzJOlGpbq/Z+NvU8t1fjSxyKsTS/x4cpmy6wNwdjjHLz5zgvPj/Tx9oqg2rh7QKipo+CFBs6ggk4wzXEgxkHXIOnEySRUViMj+2Om5JS8Mm6Hp7rml1TNLzXNLlYaPH649t9Sic0siB2NbAcgY84+B3wX+tPmh/9UY82Vr7R92bGXSVWbL9V2Pv5XrPq9NLjXP8iwxtVIHYDjv8JGzg5wfH+CZU330Z529XLJ0IdcPVosKDNHcf3/W4dRAknwq2t1xEioqEJHuF4sZUtsMS+3nlrwwJFh/bslvnmu8z7mlGIaYzi2J7Int7gD9DvBha20FwBjzz4G/AhSAekAYWqaWdzb+dm2uzHcvz/PqxCKXZ8qENnpl/70n+/iPnznB+dP9nFI99ZEWhLb5Smiw+opnPpXgeF+a/mySrJMgnVRRgYgcfe3nljJbnFuytrmb1HZuyQuit+3nltztnFuKrd1h0iieSGS7AcgAQdv7Aeziymk5lHY6/jZXdvmv/4/XCK3l8bECv3phnPPj/TwxVlA99RG1vqjAEP3lO5BLMtgqKkjG9f9fRGQLphlYHvTcUt0LaQRrzy1t576l1pklhSU5yrYbgP4X4K+NMf+u+f4vAf9zZ5Yk3Wan429//uY0fmj50t/7ICcHMh1cmRwUL4hm290gel3EYChkEowXshQzSbIqKhAR2Rd7eW6p7oc01p9bMmDbDi7p3JIcBdsKQNba/9EY803gY0QvHPy2tfZHnVyYdIedjr8FoeVrb0zx/vF+hZ8jIrQW14v+ggybrxemE3GGCs7qKFsmGderhSIiXW6n55ZaIan93FKjudvfOrdU96IdpjXnlpqhSeeWpFvdNwAZY4rW2hVjzCBwvflP63OD1tqFLX7+i8AXiIr6/9ha+webPO5DwPeB/8xa+3/u6N9AOmqn42+v3FhgvtLgc5842+GVSae0/nLzWkUFxlDMJDnen6aQTpBx4mroExE54owxOIno7/6dnFtqjeN5QXTfUt2PzoK2WvE2O7fUupxW55ZkP2y1A/S/Ab8A/JC1zY2t36+bPss1xsSBLwI/A0wCPzDG/Jm19s0NHvfPga/tePXScTsdf3vp9SkGskmePTPYwVXJXmnVULt+SNisoc47ccb6UvQ3a6jTCdVQi4jI5trPLW1n/Hn9uSUvDJujeDs7t5SIxYjF0Lkl2bH7BiBr7S803z68i6/9LHDZWnsVwBjzFeAzwJvrHvePgP8L+NAufg3poGj8zSWf2t5RsZmVOj+8scivXhjXYfcu1CoqcP1WDXX0l8VANsn4gEMunSDrxEnq/52IiHRQx88tsfl9S60dJp1b6m3bvQfoorX2ha0+ts5JYKLt/Ungw+u+xkngl4HnuU8AMsZ8DvgcwOnTp7ezZNkDJTf6ZrLdV1S+/uY0AD/71FgnlyXb5AfNeyX8uwWOhXSSkwNp+jLR7k4qoRpqERHpXnt5bikq71l7bimGIdR9Sz1nqzNAaSALDBtjBri7A1kETmzxtTf6nWLXvf8vgX9irQ3u9yTMWvtl4MsAFy5cWP81pEPmSu62x9/8IOTP35zmgw8NMFpMd3hlst5qUYEfYJujbKlEjIGsw0CrhtpJaDxARESOrJ2eW/JDu2Ycb6NzS3UvpLHu3FIMCNG5pcNsqx2gfwD8l0Rh54fcDTUrROd77mcSGG97/xRwe91jLgBfaYafYeDnjTG+tfbfb7106aQwtNxZrpNztveqyw+uL7BQbfB773mkwysToHnHQ3RjOLSKChIc64tqqFVUICIisrn2y2l3cm7JD+3qztL6c0sNP6Tqb3xuqVUqpHNL3WGrM0BfAL5gjPlH1to/3OHX/gHwmDHmYeAW8Fng19d9/dWzRcaYfwP8Pwo/3aE1/paIb6/++qU3phjKOVx4SOUHe219UQFANhlnpHC3qCCTVFGBiIhIpzzIuSW/ucO00bklr/lC5kbnltaM4enc0p7a7j1Af2iMeQ/wFJBu+/i/vc/P8Y0xv0/U7hYH/sRa+4Yx5vPNz3/pgVYuHbWT8beplTo/urnEZz80rlcyHpC1lkbzFSW/VUMdM/RnHU4NJMmnot0dJ6GiAhERkW60F+eWXC86w7vRuaX1FeIbnVtKKCzd13ZLEP474FNEAeirwM8B3wU2DUAA1tqvNh/f/rENg4+19re2sxbpvJ2Ov339jSmMgZ99+liHV3b0tF4RqjeLCoyBnJPgRH+avkx0yWg6qaICERGRo2gvzy3V/eYFtW33LcWMIbRW9y2ts71+Y/gV4BngR9ba3zbGjAF/3LllyUEqudGW7HbG37xm+cGFhwYZzqf2YXWHm7WWihvQCKLAk4jHGMglOdMqKkjGVSEuIiIi99jpuSW/eWZpo3NL7mozXnSeuP3ckjGs7jQd1XNL2w1AdWttaIzxjTFFYIb7XIIqh1s0/ra939x/fW2BpZrHi+/R7s/9NPyQkuthgbFCimN9heiS0W18AxMRERHZqUQ8xnb7kILQ4ochfhAFpo3OLbleQKV5SS3ce24JC+ltTg8dtC0DkIlmb35sjOkH/jVRG1wZ+JsOr00OgLWWqZX6ti8/fen1O4wUUnzg9ECHV3b4hNZSrvs0gpCME+fx0QKDeUehR0RERLpKq+RhO0//wuaukh82d5iC6MeuF5I8JLtDW/5rWmutMea8tXYJ+JIx5iWgaK39ceeXJ/ttdfwtvfX42+2lGq9NLvMbHz59JLZD94rrB5RdHwMc60tzrC9DMZ3QOR4RERE59GIxgxMzOBzekf3tjsB93xjzIWvtD6y11zu5IDlY82WX+DafqH/tjSliBn76ybEOr6r7BaGl7Pp4QUA+leDcWIHBfEptbSIiIiJdZrsB6NPAPzDG3AAqNMf+rLXv69jKZN9Za7m9tL3xNy8I+Yu3pvnww0MM9XD5Qd0LqDR8YsZwvC/Nsb40+ZR2e0RERES61XYD0M91dBXSFXYy/vZXV+ZZqfu82IPV10FoKdU9gtCSzyR46niRgZxDUu1tIiIiIl1vuxeh3uj0QuTg7WT87aU3phgrpjh/ur/Dq+oe1YZPzQtIxAwn+jOMNXd7REREROTw0LM3AaLxtzvLdXLbeEI/uVjlJ7eW+c2PPETsiI96+UFI2fUJQkt/Nskjo3kGso5KH0REREQOKQUgAaLxN9cLKaS2Hn/72htTxGPmyJYfWGupNqIblROxGKcHs4wUU2Qd/XEREREROez0jE6A5vjbNnY1Gn7Ixbdm+MjDgwzknH1Y2f7xgpBS3SO0MJx3ePxYgf5Mkph2e0RERESODAUgiS4/Xd5e+9tfXpmj5Pq8+J7j+7CyzrPWUnED3CAglYhxdiTPSCGly0pFREREjigFIKHcHH/Lb2P87aXXpzjel+Z9p/r2YWWd0/BDyq6HBUYLaU70FyimtdsjIiIictQpAAnz5ca2nvjfmK/w5p0Vfuu5M4ey/CC0lnLdpxGEZJ04j40WGCo4pBLa7RERERHpFQpAPS5qf6tta/zta29MkTiE5Qety0oNcKwvzbG+DMW0LisVERER6UUKQD1uu+Nvrh/w8tszPPfIEH2ZrUflDloQWsqujxcE5FMJnjxWYCCXwknoslIRERGRXqYA1OMWyg3i8a13Qr777hwVN+DFp4/tw6p2r9YIqHo+MWM40Z9mrJimkO7+wCYiIiIi+0MBqIdZa7m9XCO3jfttXnpjipP9Gd5zsvvKD4LQUnI9/MBSzCR5arjIYM4hEdduj4iIiIispQDUw8quT90Lthx/uz5X4dJUid/56MNddW6m2vCpeQGJmOHUQIbRQprcNs4yiYiIiEjv0rPFHrZYaZCIbb1L8tIbUyTjhufPje7Dqu7PD0JKrk8QWgZzSR4dzdOfdbZ1iauIiIiIiAJQj7LWcnupvuWOSd0L+MbbM3z0kWGKB1R+YK2l0gio+wHJWIwzQ1lGCmkyjuqrRURERGRnFIB6VCtQbBWAvv3uLNVGwIvv2f/yAy8IWal7WAsjhRTn+gv0ZXRZqYiIiIjsngJQj1oou8S3cZ7npdenGB/I8NTx4j6sKtrtKbs+jSAglYjz6Gie4XyKdFK7PSIiIiLy4BSAetB2x9+uzJZ5d6bM73688+UHrh9Qdn0AxoppTvRlKGZ0WamIiIiI7C0FoB603fG3l16fwonHeP6JsY6sI7SWct2nEYRknThPjBUYzDukEtrtEREREZHOUADqQdsZf6s2fL71ziwfe2yYfHpvf5vUvYBKw8cYOFZMc7w/QyGl3R4RERER6TwFoB4TXX669fjbt9+Zo+YF/NzTe1N+EITR2R4/DMmnEjx5rMBgPkVSl5WKiIiIyD5SAOoxlUZArRGQy28x/vbGHc4MZXniWOGBfr1aI6Dq+cRjhuN9GcaKKQrpg6nTFhERERFRAOoxi5XGlpeGvjtd4spshc9/4uyux9Iafshy3aM/m+Sp4SKDOYeEdntERERE5IApAPWY20s1cs5Wuz9TpBIxPvXE6K5/nRXX4z0niowW07v+GiIiIiIie00vyfeQiutTawQ4ic3/t1cbPt9+d5ZPPDay5TmhzdS9gLwTZzif2u1SRUREREQ6QgGohyxUGsS2GH/75tuz1L2QF9+z+/KDsutzdiS/5a8lIiIiIrLfFIB6yFbjb9Za/r/X73B2OMdjo/ld/Rq1RkAhnWAw5+x2mSIiIiIiHaMA1CO2M/729nSJ6/NVXnzPsV2XH1QaHo+M5HWnj4iIiIh0JQWgHrGd8beXXp8ik4zzycdHdvVrVBs+fVmH/qxqrkVERESkO3U0ABljXjTGvG2MuWyM+acbfP4zxpgfG2NeNca8Yoz5WCfX08u2Gn8ruz7fuTzHJx4fIbtFS9xmKo2As8M57f6IiIiISNfqWAAyxsSBLwI/BzwF/Jox5ql1D7sIPGOtPQ/8feCPO7WeXlZt+FS3GH/7xqUZGn7Ii0/vrvyg4voMZpP0Z3X2R0RERES6Vyd3gJ4FLltrr1prG8BXgM+0P8BaW7bW2ua7OcAie26h0uB+02/WWl56Y4pHR/M8utvyA8/n4ZHd/VwRERERkf3SyQB0Ephoe3+y+bE1jDG/bIy5BPy/RLtA9zDGfK45IvfK7OxsRxZ7lN1Zqt33Tp+3pkrcXKjuevenXPcZyqfoy+jsj4iIiIh0t04GoI32HO7Z4bHW/jtr7Tngl4B/ttEXstZ+2Vp7wVp7YWRkdwf0e1W14f//7d15jCTned/x39M93XPvMcce3Hu5K5K7G500JYeGLMmmtLSNUEEQRI4tJ4EdQYiVyAgcRwGCAEEQIEbgIAgghxAc/WE4iXLYDhiH2hVNSRaok5REUTtcHitSEpe7swd3ye9pxgAAIABJREFUd46d6emuqid/dPdMdU/1MUdPd09/P8BoaqreevvtmRa3fv289bbu5kP196Vrtjl34aoGM2m9/+Taf7furlwQ6ujE8EaGCQAAAGyJVgagy5IOxX4+KOlKrcbu/jVJ95rZRAvH1HNu3c0nJtGyuVxBz1y6qQ/cN6nBbO2QVMv8UqDJ0ax2DFD9AQAAQOdrZQB6VtJJMztmZllJH5P0RLyBmZ2w0pJhZvZuSVlJb7VwTD2n0fS3L790XYXQ9eiZtU9/c3flCqGOTnDvDwAAALrD+tY7boK7B2b2KUnnJaUlfd7dp8zsk6Xjj0v6W5J+w8wKkhYl/Z3YogjYoPL0t/Hh/sTj7q4vXpjWfXtHdWwdIWYuF2jfzkGN1AlYAAAAQCdp6ZWruz8p6cmqfY/Htn9f0u+3cgy97HaD6W8XrszqzTuL+vSHTq65b3dXPox0ZHxo/QMEAAAAtlhLPwgV7XWlwfS3cxemNZxN6+dOrv22q9lcoP27Bur2DwAAAHQaAtA2tZgPNb8U1Fz9bWaxoG/86KY+eP8eDWTWtvhB5K5CGOnwGNUfAAAAdBcC0DZ1+25epfUlEj198ZqCyNf12T9zuYIO7h7UUJbqDwAAALoLAWibujKzqOEaAcXddX5qWg/s36Ej42v7/J7IXUHkOkT1BwAAAF2IALQNLeZDzeeCmlPbXnhzRldmcuuq/swuFnRw99Cap80BAAAAnYAAtA3dvptXveXfzl2Y1kh/nx4+Mb6mfsPIFbrr4O7BDY4QAAAAaA8C0DZUb/rbnYW8vvXaW/rQ/XtqLpBQy2yuoMNjVH8AAADQvQhA20yj6W9/efH6uhY/CCOXu+sA1R8AAAB0MQLQNlNv+ltUWvzg9D071ryIwcxiXkfGh9dcNQIAAAA6CQFom6k3/e35N+5oenbtix+EkStlpnt2Uf0BAABAdyMAbSO5Qqi5OtPfzl2Y1o6BPj18YmJN/RarP0PK9vFyAQAAQHfjinYbKX74afKxW3fz+vbrb+kXHtirTLr5P3sQRkqlTPup/gAAAGAbIABtI1dmcjWnvz118Zoi15qnv83kCjo2Mbym0AQAAAB0Kq5qt4ni9LdC4vS3MHJ9aWpabz+4c0338RTCSH1p074dA5s5VAAAAKBtCEDbxO27+Zqfffr9N27r+tzS2qs/iwUdHx9RH9UfAAAAbBNc2W4TV2ZyGqox/e3chWntGszofcfHm+6vEEbK9qW0Z0f/Zg0RAAAAaDsC0DZQb/rbW/NLevbHt9a8+MFsrqB7J4ap/gAAAGBb4ep2G7izUHv625deLC5+8JHTe5vuLx8Uqz+T3PsDAACAbYYAtA28eSd5+lsYub704rTeeWiX9u9sfvGD2aW8TkyOKJ2qFasAAACA7kQA6nK5QqjZxeTpb9/9yS3dnM+vafGDpSDUYKZPEyPc+wMAAIDthwDU5WYWan/46RcvTGv3UEbvPTbWdH9zuUDHJ4aVovoDAACAbYgA1OWuzOQ0lFk9/e36XE7f++ltPXJqX9MLGeQKoYayaao/AAAA2LYIQF0sVwh1Z6Ggwezq6W9fevGa3KWPnGp+8YP5fKATe0ao/gAAAGDbIgB1sVrT38LI9dSL1/TuI7u1p8mV3BbzoUazfRobzm7yKAEAAIDOQQDqYrWmv33nx7d06+7aFj+4my/o+J4RWa0bigAAAIBtgADUpepNfzt3YVrjw1n9zNHmFj9YyAcaHcxo91Bms4cJAAAAdBQCUJeqNf3t2mxO3//pbT1yam/Tn+OzkA90YpLqDwAAALY/AlCXujqT02DCZ/+cn5qWmfThU81Nf1vIB9o1lNXOQao/AAAA2P4IQF1oKQh1Z7GwKgAFYaSnLl7Te47s1uRoc0tZ380HOj5B9QcAAAC9gQDUhWYWCpK0KrR8+/VburNQ0NnT+5vqZ34p0Phwv3Zy7w8AAAB6BAGoC12dWUyc/nZualoTI/16z5HdTfWzWAh0dGJ4s4cHAAAAdCwCUJdZCkLdXlg9/e3KnUU9/8YdfeR0c4sfzOcCTY70c+8PAAAAegoBqMvUmv72pRenlTLpkQf2NuzD3bUYhFR/AAAA0HMIQF0mafpbIYz0lxev66FjYxofabz4wVwu0L4d/RodoPoDAACA3kIA6iJLQahbCdPfvvXaW5pZbG7xA3dXPgx1eJzqDwAAAHoPAaiLzCwUZFo9/e3chWntGe3Xuw7vatjHbC7Qvp2DGunva9EoAQAAgM7V0gBkZmfN7GUzu2Rmn0k4/mtm9kLp6xtm9o5WjqfbXZ1d/eGnb95e1Atvzugjp/cp1eCzfNxdhTDSkfGhVg4TAAAA6FgtC0Bmlpb0WUmPSjol6VfN7FRVs9cl/by7v13Sv5H0uVaNp9stBaFu382vCkDnpqaVTllTix/MLQW6Z9eAhrJUfwAAANCbWlkBekjSJXd/zd3zkr4g6bF4A3f/hrvfLv34LUkHWzierjazUJB75fS3fBDp6Zeu6b3HxrR7OFv3/Mhd+SDS4THu/QEAAEDvamUAOiDpjdjPl0v7avlNSV9MOmBmnzCz58zsuRs3bmziELvH9GxOQ9nK6s83fnRTc7lAZ0/va3j+bK6gg7sHNZhd/QGqAAAAQK9oZQBKuiHFExuafVDFAPTPk467++fc/UF3f3BycnITh9gd8kGkWzWmv+3bMaB3HKq/+EHkrjByHRrj3h8AAAD0tlYGoMuSDsV+PijpSnUjM3u7pD+S9Ji7v9XC8XStmcXVH37601sLmroyq7NnGi9+MLtY0KHdQxrIUP0BAABAb2tlAHpW0kkzO2ZmWUkfk/REvIGZHZb0Z5I+7u6vtHAsXS3pw0/PT02rL2X6hfv31D03jFyRuw7sHmzlEAEAAICu0LLlwNw9MLNPSTovKS3p8+4+ZWafLB1/XNK/kjQu6Q9L1Y3A3R9s1Zi6UXn629jQyiIHS0Gop1+6pp+9d1y7huovfjCzmNfhcao/AAAAgNTCACRJ7v6kpCer9j0e2/4tSb/VyjF0u6Tpb1+/dFN3l8KGix+EkctMumcX1R8AAABAavEHoWLjpmcWNdBXtfjBhWkd2DWov3ZgZ91z7yzmdXR8WP19VH8AAAAAiQDU0crT3+LLX//krbu6OD2nj5zeW1EVqhaEkdJm2reT6g8AAABQRgDqYLO5glyV09/OXSgufvCh+/fWPXcmV9DRiWFl+/gTAwAAAGVcHXew6ZlcxfS3XCHUV16+rodPTGjnYKbmeUEYqS9l2rdzYCuGCQAAAHQNAlCHKoSRbs4vVUx/e+bVm7qbb7z4Qbn6k0nz5wUAAADiuELuUEmrv31x6qoO7R7U6Xt21DyvEEbqS5v27aD6AwAAAFQjAHWo6ulvr92Y1yvX5nX2zL66ix/M5gq6d2JEfVR/AAAAgFW4Su5ASdPfzk1NK5tO6UP31V78oBBGyvaltIfqDwAAAJCIANSBqqe/LeZDffXlG/q5ExMaGaj92bUziwXdOzGsdKp2hQgAAADoZQSgDnRtNlfx4aVfe/WGFguhzp6pvfhBPog0kElpYpTqDwAAAFALAajDJE5/uzCtI2NDun/faM3zZpfyundyhOoPAAAAUAcBqMPMLhbkLqVK098uXZ/XpRv1Fz/IFUINZvo0MdK/lUMFAAAAug4BqMNUT387d+Gqsn0pfeC+PTXPmVsKdO/ksFJUfwAAAIC6CEAdpBBGuhGb/raQD/RXr97Q+09OaKQ/efGDXCHUaH9a48NUfwAAAIBGCEAdpHr621+9ckO5QqSzp/fXPGd+KdDxyRGqPwAAAEATCEAdJD79zd31xQvTOjYxrLftHUlsv5gPNTrQp7Hh7FYOEwAAAOhaBKAOEVRNf3vl2rxev3lXj9ZZ/OBuvqB7J0dqHgcAAABQiQDUIWYWC4rcl6e/nZu6qoFMSj//tsnE9gv5QDuHsto1lNnKYQIAAABdjQDUIa7NLmkgXVzoYH4p0NdevamfPzmpoWzy4gd386GOTwxT/QEAAADWgADUAYLyh5/2F6e/ffXl68oHkc6eSV784O5SoLGhjHYNce8PAAAAsBYEoA4wmwuWp7+5u85dmNaJyRGd2JO8+MFCIdCxyeRjAAAAAGojAHWAa7M59aeL1Z+Xpuf0k1sLOntmX2Lb+aVAEyP92jnIvT8AAADAWhGA2iwII92YW5n+du7CtAYzab3/5OrFD9xduUKooxPDWz1MAAAAYFsgALVZfPrbfC7QM5du6gP3TWqwtBx23PxSoMnRrHYMUP0BAAAA1oMA1Gbx6W9ffvma8mGks6dXT39bqf5w7w8AAACwXgSgNopPfysvfvC2vSM6nrDAwVwu0L6dgxrpT14WGwAAAEBjBKA2ms0FCqPi9LepK7N64/aiHj29eulrd1c+jHRkfKgNowQAAAC2DwJQG12fy6m/r/gnODc1reFsWj93cmJVu9lcoP27BjRM9QcAAADYEAJQm4SRF6e/Zfs0s1jQ1y/d1Afv26OBTOXiB5G7gijS4TGqPwAAAMBGEYDaZHaxoDBypVOmL790TUHkiZ/9M5cr6MCuQQ1lqf4AAAAAG0UAapPrczll0ym5u85PXdMD+0Z1ZLzy830idxVC1yGqPwAAAMCmIAC1QRi5rpemv/3wzRm9eWcxsfozmyvo0NjQqmlxAAAAANaHANQG8elv56amNdLfp4dPVC5+EEauMHId3D3YplECAAAA2w8BqA3K09/uLOT1zR+9pQ/dv0f9fZVVntlcQYep/gAAAACbigC0xeLT355+6Xpx8YPT+1a1cXcdoPoDAAAAbCoC0BabXSwoiFxm0vmpaZ2+Z8eqRQ5mFvM6Mj68qioEAAAAYGNaGoDM7KyZvWxml8zsMwnH7zezb5rZkpn9bivH0iluzC8pm0rpB2/c0dWZXGL1J2Wme3ZR/QEAAAA2W8s+XMbM0pI+K+kRSZclPWtmT7j7i7FmtyT9E0kfbdU4OkkYua7P5jTSn9G5qWmNDqxe/GBmMa9jE8PK9lGcAwAAADZbK6+yH5J0yd1fc/e8pC9IeizewN2vu/uzkgotHEfHmMsVp7/NLhb07ddv6Rfu36tMeuVPEISRUinTfqo/AAAAQEu0MgAdkPRG7OfLpX1rZmafMLPnzOy5GzdubMrg2uH63JIyqZSeunhNYcLiBzO5go5NDFeEIgAAAACbp5VX2pawz9fTkbt/zt0fdPcHJycnNzis9ihPfxvMpnV+alpvP7CzYpW3QhipL2Xat2OgjaMEAAAAtrdWBqDLkg7Ffj4o6UoLH6+jlae/vXB5RtfnlnT2TFX1Z7Gg4xMj6qP6AwAAALRMK6+2n5V00syOmVlW0sckPdHCx+to5elv56auaudgRu87Pr58rBBGyvaltGdHfxtHCAAAAGx/LVsFzt0DM/uUpPOS0pI+7+5TZvbJ0vHHzWyfpOck7ZAUmdnvSDrl7rOtGlc7RKXpb/kg0ndev6W/+a4DFff5zOYKum/vKNUfAAAAoMVaFoAkyd2flPRk1b7HY9vTKk6N29ZmcwUVQtfTL11X5NKHT61Mf8sH5eoP9/4AAAAArUbJYQvcnF9S2kznp67pnYd2VXzI6dxSQScmR5ROJa0ZAQAAAGAzEYBaLIpc0zM5vXJtTjfnlyqWvl4KQg1k0poY4d4fAAAAYCsQgFpsLhcoiFznX5zW7qGM3ntsrOLY8Ylhpaj+AAAAAFuCANRiN+Zzmlko6Ls/ua1ffGDv8kIHuUKooSzVHwAAAGArEYBaqDz97Rs/ekvu0kdi09/m84HunaT6AwAAAGwlAlALzeUCLQWRnrp4Te86vFt7Syu95QqhRrN9Gqf6AwAAAGwpAlAL3ZjP6cKbM7p1N6+zZ2LVn6WCju8ZkRnVHwAAAGArEYBapDz97a9euamx4aweOlpc/GAhH2h0MKPdQ5k2jxAAAADoPQSgFplbCnR1ZlHf/+ltPXJq7/Ln/CzkA52YpPoDAAAAtAMBqEVuzi3pmVffkpn04VN7JRXDz86hrHYOUv0BAAAA2oEA1AJR5Hrj9oK+9uoNvfvwbu0ZLS5+sJAPde8E1R8AAACgXQhALTC3FOi5H9/S7YWCHi0tfjC/FGhsOKud3PsDAAAAtA0BqAVuzi3pqy/f0MRIv95zpLj4wWIh0NGJ4TaPDAAAAOhtBKBNFkWu59+4owtXZvXh0uIH87lAkyP93PsDAAAAtBkBaJPNLQV6+qVrSpUWP3B3LQYh1R8AAACgAxCANtnVO4t65tWb+pmjYxof6df8UqB9O/o1OkD1BwAAAGg3AtAmiiLXX7xwVbO5QGfP7JO7aykIdXic6g8AAADQCfraPYDtZD5fnP62Z7Rf7zq0W7O5QPt2Dmqkn18zAADoUe7N7SseaHPbGud3U9uav4Nm+1xrv7H96Yw0uLv5x28Trsw30fM/va2LV+f06+87opRJhTDSkfGhdg8LANAJ3GMXEOVtXzlWvb2qba3t+Hmq0Ye07guaum2rH6PquVT3t6pt0mPValuj32bHFe+7ut9VbRMey2uMK6nf+N+o0bgSn1d1P3XOrzeGtbRt9ndb82/WzGvGVrcrfzZis20T2yWMqS1tq9pJrfkdbKhtree1eteKJn8HHknZYenow7U66hgEoE3i7vofz15WOmV65IG9mlsKdM+uAQ1l+RUD6BHLF1x1Lurj201f1FddeDZ7nkexx4pWLtw8Kn6Vz/FopY8okhRVPpeKPqLK/ivOq25bOlbur/oKI34RkXhBsdywxv5G55UfP6m/hP01L+xqXFQ1pUbbxD5qtW1251oeq4a1jCvxorfJdmt+rITzaj6vOhfjTVnL+Rt9LGwrYUEK8u0eRVO4Ot8kb93N62uv3NBDR8e0ayijW3fzOjzGvT8AavDYBXXFdvlCuvqYrxyrOD9+wR27YF91gV/ejl2Qx8+tDgMV21V917zA1xov6j22HT/U7Hmq3K5+7Ipzyvss9nBWdSx+XvxY6X8qjpXalvtM13m8VeMB0LNqvWmzfCzhjZ74seXm1W8kVZ2/3DbhzaSK/qr+e1oxhtjjxMdUMbbYmMKClOqORb8IQJvk/3z/Tc0tFRc/mM0VdHD3oAaz6XYPC0CzolgAWRVCEoJIuU0USlGw8t2j2HZY3PZoZbvcpua0l+oL6ap/BJcPVbWLX5xXX+DH21Zf4FuNPsptzSSlGwSKbXBxXxEGlRAovfg3rFUZWnVOOSDWqybVCpUJ58RDasNzSvuqA3PNi53ytlba17ywqrowSrxISzh/oxdW2/FicaufE3/T5Mfayv9P9ILjH5DOfLTdo2iIALQJ3F1/+t3L2rujX28/uFMziwUdGuPeH2DdoqQAklQpUeXPUahi0IhKoSRY2edR7Od429J3KaHyUGOKS7yNmWQpLQcBS1UGg/KxVJ+USkthqjSOghQUpDBf46t0LIjtq1vxie0v/14qLp7V3DnNBIF6F/Wd8NjrCSHYRpKqeVLNCuCqNwiq30yoV9GrfgPAqtrFHid+XsM3ImqMqZXPqaK/+L5U5ePGz6/5WNvo+Se+wbTG55847oTzO/r108RzikJpcEzdgAC0CX5w+Y4uTs/p7/3sUc3nAh3aPaSBDNUfbBMVoSMhlMQvJKvbLFdGyiEkrAwlUeyrXCUpv8u+zLRygWqrxydfabP8H/OkECIpDFbCRxSUfi6UwkhV8GgURmq1qWhX1VcUtOZvVH5+8SBWHcAsaX/VOYn7apwT/13XPCfWLtXX4JxmHjuh/2Yeu+E5Sc+rTl/V/aw6J7V6/DXPSZVe1nXOSdxX45yk10DPXCzGjwHYctwD1Fv+5Fs/UTpl+uB9kwrddWD3YLuHhO2s4VSt2Lvda5qqFcSCS4OpWmZ13jT3lTbSykVfFK2EjTCMhZB8ZTAJCzVCSK0wUiewxNtFhY3/7i0lpbPFr77synb8KzNcXAZ0VbtMQvtM/b4qzssUK0iJYQcAADSLALRBi/lAX7wwrfceG1MqZTo0Nkj1ZzuLqioetbZX3XTulfubnqpVatPUVC3T6lRSetzyY3hYDAdRPHCEUlQKIWFhdTBJChV1qx412mxUPHxUB4pygMjsqBMgmgwafTXOTWeKVQwA6FRe852pcoNN6KPJfjb8OJs11oadbNLjNGjT1FA343E2aUrvev4+USil+zfn8VuMf8036M+//6buLoU6e3qfJNc9u6j+bAqvCgwV2w3ug6g+Z/kG9Ph2WGwTBZX7K+4nSdgX1+h+EddKmIhPuyp/VVc9okJxXOXtciVkOYw0WRkph5H4tK4N/2NlK+EglUkIEhmpf6QyaKSSAscGKiNWfSN+i8VfS1JxO1ha2Y7fIBtfOa18A3rFfq30o6opPBX7y9W2pP1NKP9+mvoHsDyOJtquq99W9t2NY26maaztZv8+6vZR5/w1PdcG/dTto4nn0nAsm9FHE/1sZh91+1nD86l5bqPj9Zo06iN2rOE46nWxiX3Ua9vw34/q6ZnreZwm+tj030mDsdZ93g3GUj3ltG6b0vdMd9wDTwDaoP/2nZ9q745+HRob1JGxYfX3dVH1J37PxqqQUStgxC/0EsJIFAsM1duqChVRVbgohw6FCReMsYvQ8nnxSkZYFS4qvqqmeVVPBYvClfARP8/DWEipfpzCyv0jYSzchLHv5WrNZkgKCvGQkR1JDhmNQkvDykipzfL9Gy2QuBpW1fdgaeXn+Mo7q25sl1ZeL9VVseoLvaT9se1y4LJUcTtVXswgXfp9xPenVqanWWrl9xXfbnRfStPb8aew1gvfNbRfU9+t6reVfW/zMdfqey0XgTWbbEUfTfTTKX001c8m9MF0V2DTEIA24OXpWV14c1Yff98R9aVS2h+v/iRVI2oGiqqLuFrHl6dIeSxQlCsZ1dWL2H55VTXDVy7Oy5WPMBYAwkDy2M3rFfuC4pQpj13sl8+P39Tu8TBRI2BUVEGS9rc4VMSVL1RTGSld9T3VtzL9KZ2R+vql1EjC8XT981Kx/Y3CSDywpDIb/4dv1UpZse2K1bKq2pQrURuqZtRRvmE8VQoT5YBRDhLpdOX+VLxNqV353PI5SYFhTQHDSqGmC3BBBADAmhGANuCPv/4j9aWkXxx9XW9buKLsj9OlqUf5qopEpIrpTx6W7ruoDgjxqkR1YKhePat8PKlNnSrIctAph5eo8RNdL0s1DhTl7cxgc+Ehqa9UX+PQ0uj81Dord9WVilX7VHl8OTw0qmZEUiFX/Cr+MhsNpP7h5XCQUM1Ytb+6mpGwvVnVDC7gAQDAFiMArdPi/Ix+74Vf1r/Mhup/JlDKW7S8bdnyhXpVtSFpX2agstoQDwi1+lg+Hq9i9FVt91W1j/cVP56uHyo2Ghri7Svuw6jur1rsYjsshdDkATbxByl3WapgLE+VKgeLeEgoVymqjqf6tCXVDIIGAADAMgLQOuU9o5cmPqxR3dWRPbs0PDhQGQIaBYTqCkg84CTtk9T20FCP+8pN+o1sJDSUp0vF28XDQvXPSZ+HUXFjYK3KRRPfCRUAAABdhwC0TjtHh/TAx/9A0y88rf69u6RU9b0QzahRaVhebWop1mWnhoZ1fCc4AAAAoE0IQBswNDyqe079rPr6M6p/sU9gAAAAADoBAWgD+jJZjUwcavcwAAAAADSpS9Z6BQAAAICNa2kAMrOzZvaymV0ys88kHDcz+0+l4y+Y2btbOR4AAAAAva1lAcjM0pI+K+lRSack/aqZnapq9qikk6WvT0j6z60aDwAAAAC0sgL0kKRL7v6au+clfUHSY1VtHpP0x170LUm7zGx/C8cEAAAAoIe1MgAdkPRG7OfLpX1rbSMz+4SZPWdmz924cWPTBwoAAACgN7QyACWt3Vz9wTfNtJG7f87dH3T3BycnJzdlcAAAAAB6TysD0GVJ8TWiD0q6so42AAAAALApWhmAnpV00syOmVlW0sckPVHV5glJv1FaDe59kmbc/WoLxwQAAACgh7Xsg1DdPTCzT0k6Lykt6fPuPmVmnywdf1zSk5J+SdIlSQuS/kGrxgMAAAAALQtAkuTuT6oYcuL7Ho9tu6TfbuUYAAAAAKCspR+ECgAAAACdhAAEAAAAoGcQgAAAAAD0DAIQAAAAgJ5BAAIAAADQM6y4EFv3MLMbkn7S7nHETEi62e5BoOvwusF68LrBevC6wXrwusF6dNLr5oi7TyYd6LoA1GnM7Dl3f7Dd40B34XWD9eB1g/XgdYP14HWD9eiW1w1T4AAAAAD0DAIQAAAAgJ5BANq4z7V7AOhKvG6wHrxusB68brAevG6wHl3xuuEeIAAAAAA9gwoQAAAAgJ5BAAIAAADQMwhA62RmZ83sZTO7ZGafafd40B3M7PNmdt3MLrR7LOgOZnbIzL5iZhfNbMrMPt3uMaHzmdmAmX3HzH5Qet3863aPCd3DzNJm9n0z+4t2jwXdw8x+bGY/NLPnzey5do+nHu4BWgczS0t6RdIjki5LelbSr7r7i20dGDqemb1f0rykP3b3M+0eDzqfme2XtN/dv2dmo5K+K+mj/PcG9ZiZSRp293kzy0h6RtKn3f1bbR4auoCZ/VNJD0ra4e6/0u7xoDuY2Y8lPejunfJBqDVRAVqfhyRdcvfX3D0v6QuSHmvzmNAF3P1rkm61exzoHu5+1d2/V9qek3RR0oH2jgqdzovmSz9mSl+844mGzOygpF+W9EftHgvQKgSg9Tkg6Y3Yz5fFBQmAFjOzo5LeJenb7R0JukFpGtPzkq5Lesrded2gGf9R0u9Jito9EHQdl/QlM/uumX2i3YOphwC0Ppawj3fWALSMmY1I+lNJv+Pus+0eDzqfu4fu/k5JByU9ZGZMu0VdZvYrkq67+3fbPRZ0pYfd/d2SHpX026Vp/x2JALQ+lyUdiv18UNKVNo0FwDZXuofjTyX9V3f/s3aPB93F3e9I+qqks20eCjrfw5L+Ruleji9I+pCZ/Ul7h4Ql3LvWAAACaUlEQVRu4e5XSt+vS/pzFW8Z6UgEoPV5VtJJMztmZllJH5P0RJvHBGAbKt3M/l8kXXT3/9Du8aA7mNmkme0qbQ9K+kVJL7V3VOh07v4v3P2gux9V8drmy+7+620eFrqAmQ2XFuqRmQ1L+rCkjl3xlgC0Du4eSPqUpPMq3pD8P919qr2jQjcws/8u6ZuS7jOzy2b2m+0eEzrew5I+ruI7sc+Xvn6p3YNCx9sv6Stm9oKKb9o95e4saQygVfZKesbMfiDpO5L+n7ufa/OYamIZbAAAAAA9gwoQAAAAgJ5BAAIAAADQMwhAAAAAAHoGAQgAAABAzyAAAQAAAOgZBCAAQEcys11m9o9K2/eY2f9u95gAAN2PZbABAB3JzI5K+gt3P9PmoQAAtpG+dg8AAIAa/p2ke83seUmvSnrA3c+Y2d+X9FFJaUlnJP2BpKyKHxi7JOmX3P2Wmd0r6bOSJiUtSPqH7v7S1j8NAEAnYQocAKBTfUbSj9z9nZL+WdWxM5L+rqSHJP1bSQvu/i5J35T0G6U2n5P0j939PZJ+V9IfbsmoAQAdjQoQAKAbfcXd5yTNmdmMpP9b2v9DSW83sxFJf13S/zKz8jn9Wz9MAECnIQABALrRUmw7iv0cqfhvW0rSnVL1CACAZUyBAwB0qjlJo+s50d1nJb1uZn9bkqzoHZs5OABAdyIAAQA6kru/JenrZnZB0r9fRxe/Juk3zewHkqYkPbaZ4wMAdCeWwQYAAADQM6gAAQAAAOgZBCAAAAAAPYMABAAAAKBnEIAAAAAA9AwCEAAAAICeQQACAAAA0DMIQAAAAAB6xv8HWMA1dvjVSaUAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "#SK483_time_PCB & SK483_time_BV\n", "plt.figure(figsize=(14,7))\n", "plt.rcParams['pdf.fonttype'] = 42\n", "sns.lineplot(data=df2[(df2[\"strain\"]==\"SK483\")&(df2[\"condition\"]==\"time\")&(df2[\"chromophore\"]==\"PCB\")], x=\"time\", y='ratio',ci=\"sd\")\n", "sns.lineplot(data=df2[(df2[\"strain\"]==\"SK483\")&(df2[\"condition\"]==\"time\")&(df2[\"chromophore\"]==\"-BV\")], x=\"time\", y='ratio',ci=\"sd\")\n", "#plt.savefig(\"20211005-SK483-time-course-1.pdf\")" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.3" } }, "nbformat": 4, "nbformat_minor": 4 }