{ "cells": [ { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import seaborn as sns\n", "from matplotlib import pyplot as plt \n", "import glob " ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "['quantification/SK296-new-1-7.csv',\n", " 'quantification/SK295-1-8.csv',\n", " 'quantification/SK276-BV-1-2.csv',\n", " 'quantification/SK287-1-5.csv',\n", " 'quantification/SK276-DMSO-1-1.csv',\n", " 'quantification/SK285-1-4.csv',\n", " 'quantification/SK294-new-1-6.csv',\n", " 'quantification/SK305-new-1-9.csv',\n", " 'quantification/SK284-new-1-3.csv']" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "flist = glob.glob(\"quantification/*.csv\")\n", "flist" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | Mean | \n", "sample | \n", "genotype | \n", "order | \n", "
---|---|---|---|---|
224 | \n", "54.246 | \n", "SK276-DMSO-1-1 | \n", "DMSO | \n", "1 | \n", "
228 | \n", "54.739 | \n", "SK276-DMSO-1-1 | \n", "DMSO | \n", "1 | \n", "
229 | \n", "59.014 | \n", "SK276-DMSO-1-1 | \n", "DMSO | \n", "1 | \n", "
230 | \n", "64.754 | \n", "SK276-DMSO-1-1 | \n", "DMSO | \n", "1 | \n", "
231 | \n", "57.623 | \n", "SK276-DMSO-1-1 | \n", "DMSO | \n", "1 | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
377 | \n", "8089.623 | \n", "SK305-new-1-9 | \n", "HO1 tFnr-Fd PcyA | \n", "9 | \n", "
376 | \n", "5056.667 | \n", "SK305-new-1-9 | \n", "HO1 tFnr-Fd PcyA | \n", "9 | \n", "
375 | \n", "5912.797 | \n", "SK305-new-1-9 | \n", "HO1 tFnr-Fd PcyA | \n", "9 | \n", "
385 | \n", "6749.391 | \n", "SK305-new-1-9 | \n", "HO1 tFnr-Fd PcyA | \n", "9 | \n", "
399 | \n", "6208.435 | \n", "SK305-new-1-9 | \n", "HO1 tFnr-Fd PcyA | \n", "9 | \n", "
450 rows × 4 columns
\n", "