{ "cells": [ { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", "from matplotlib import pyplot as plt\n", "import seaborn as sns\n", "import glob" ] }, { "cell_type": "code", "execution_count": 107, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Meansamplegenotypeorder
7204154.238SK063z1
6014860.037SK063z1
6004437.604SK063z1
5993511.984SK063z1
5984934.554SK063z1
...............
1808400.155SK1013R4
1797074.680SK1013R4
1788217.659SK1013R4
1867295.597SK1013R4
07719.235SK1013R4
\n", "

721 rows × 4 columns

\n", "
" ], "text/plain": [ " Mean sample genotype order\n", "720 4154.238 SK063 z 1\n", "601 4860.037 SK063 z 1\n", "600 4437.604 SK063 z 1\n", "599 3511.984 SK063 z 1\n", "598 4934.554 SK063 z 1\n", ".. ... ... ... ...\n", "180 8400.155 SK101 3R 4\n", "179 7074.680 SK101 3R 4\n", "178 8217.659 SK101 3R 4\n", "186 7295.597 SK101 3R 4\n", "0 7719.235 SK101 3R 4\n", "\n", "[721 rows x 4 columns]" ] }, "execution_count": 107, "metadata": {}, "output_type": "execute_result" } ], "source": [ "files = glob.glob(\"quantification/*.csv\")\n", "orders = [4,3,4,2,3,2,2,2,1,1]\n", "genotypes = [\"3R\",\"2L\",\"3R\",\"1L\",\"2L\",\"1L\",\"1L\",\"1L\",\"z\",\"z\"]\n", "\n", "df = pd.DataFrame()\n", "for file,order,genotype in zip(files,orders,genotypes):\n", " tmp = pd.read_csv(file,index_col=0)\n", " tmp[\"sample\"] = file[15:-6]\n", " tmp[\"genotype\"] = genotype\n", " tmp[\"order\"] = order\n", " df = pd.concat([df,tmp])\n", "\n", "df = df.reset_index(drop = True)\n", "df2 = df.sort_values('order')\n", "\n", "df2" ] }, { "cell_type": "code", "execution_count": 82, "metadata": {}, "outputs": [], "source": [ "SK027 = df[df[\"sample\"]==\"SK027\"]\n", "SK063 = df[df[\"sample\"]==\"SK063\"]\n", "SK099 = df[df[\"sample\"]==\"SK099\"]\n", "SK101 = df[df[\"sample\"]==\"SK101\"]" ] }, { "cell_type": "code", "execution_count": 101, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "191\n", "185\n", "182\n", "163\n" ] } ], "source": [ "print(df2['sample'].str.contains('027').sum())\n", "print(df2['sample'].str.contains('063').sum())\n", "print(df2['sample'].str.contains('099').sum())\n", "print(df2['sample'].str.contains('101').sum())" ] }, { "cell_type": "code", "execution_count": 112, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 112, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAEGCAYAAAB8Ys7jAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAASoUlEQVR4nO3df5BdZ33f8fcnsokJwbEdrx3VRhakhpRhihxtXRIPHgdj6hAGwzSZ4imOOiGzzLTuQEsntcMfhfIPaSDQTFLSJbjREIfETUzt8UCJRwkjmEntaIkxcmUjmlhERkgiNAngKY7lb/+4R3C92tU9u3vv7j5336+ZO/ec55y79/tI1sfPnuf8SFUhSWrP92x0AZKk1THAJalRBrgkNcoAl6RGGeCS1Khz1vPLLr744tq5c+d6fqUkNW9hYeFrVTWzuH1dA3znzp0cOHBgPb9SkpqX5MhS7R5CkaRGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRq3rlZhb3cLCwlm37969e50qkTQNHIFLUqN6B3iSbUn+LMl93fpFSe5Pcrh7v3ByZUqSFlvJCPxtwKGh9duAfVV1JbCvW5ckrZNeAZ7kcuCngN8car4J2Nst7wXeMN7SJEln03cS84PALwDPH2q7tKqOAVTVsSSXLPXBJHPAHMCOHTvWUKo0JvPzo/eZm5t8HdIajRyBJ3kdcKKqzn4KxTKqar6qZqtqdmbmjPuRS5JWqc8I/Brg9UleC5wHnJ/kt4HjSbZ3o+/twIlJFipJeraRI/Cqur2qLq+qncCbgD+qqjcD9wJ7ut32APdMrEpJ0hnWch74e4EbkhwGbujWJUnrZEVXYlbVp4FPd8t/BVw//pK02fWZAzzNuUBpcrwSU5IaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGuUzMTcRn5kpaSUcgUtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RG9Xmo8XlJHkzy+SSPJHl31/6uJE8keah7vXby5UqSTutzHvi3gVdV1TeTnAt8Nsknu20fqKr3Ta48SdJyRgZ4VRXwzW713O5VkyxKkjRar2PgSbYleQg4AdxfVQ90m25N8nCSO5JcuMxn55IcSHLg5MmTYypbktQrwKvqVFXtAi4Hrk7yMuBDwA8Du4BjwPuX+ex8Vc1W1ezMzMyYypYkregslKr6awZPpb+xqo53wf4M8GHg6gnUJ0laRp+zUGaSXNAtPxd4NfBoku1Du70RODiZEiVJS+lzFsp2YG+SbQwC/66qui/JR5PsYjCh+Tjw1smVKUlarM9ZKA8DVy3RfstEKpIk9eKVmJLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUX3uBy41YX5hvt+OT+4fvc/C4G1u99zqC5ImzBG4JDWqzyPVzkvyYJLPJ3kkybu79ouS3J/kcPe+5FPpJUmT0WcE/m3gVVX1cgZPoL8xySuA24B9VXUlsK9blyStk5EBXgPf7FbP7V4F3ATs7dr3Am+YSIWSpCX1msTsHmi8APx94Ner6oEkl1bVMYCqOpbkkmU+OwfMAezYsWM8VW+QhYWFs27fvXv3OlXSjvme84oAc84XSivSaxKzqk5V1S7gcuDqJC/r+wVVNV9Vs1U1OzMzs9o6JUmLrOgslKr6a+DTwI3A8STbAbr3E2OvTpK0rD5nocwkuaBbfi7wauBR4F5gT7fbHuCeSRUpSTpTn2Pg24G93XHw7wHuqqr7kvwJcFeStwBfBn5mgnVKkhYZGeBV9TBw1RLtfwVcP4miWjVqklOSxskrMSWpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSo3o9E1Nqxmf2b3QF0rpxBC5JjerzSLUXJPnjJIeSPJLkbV37u5I8keSh7vXayZcrSTqtzyGUp4F3VNXnkjwfWEhyf7ftA1X1vsmVJ0laTp9Hqh0DjnXL30hyCLhs0oVJks5uRcfAk+xk8HzMB7qmW5M8nOSOJBeOuTZJ0ln0PgslyfcDfwC8var+NsmHgPcA1b2/H/i5JT43B8wB7NixYxw1a0rNz/fbb25usnUMm1/oV9Tc7nUsSur0GoEnOZdBeN9ZVXcDVNXxqjpVVc8AHwauXuqzVTVfVbNVNTszMzOuuiVpy+tzFkqAjwCHqupXhtq3D+32RuDg+MuTJC2nzyGUa4BbgC8keahr+0Xg5iS7GBxCeRx460QqlCQtqc9ZKJ8FssSmT4y/HElSX15Kr3bsP32Z/KNLb3/Sy+i1tXgpvSQ1ygCXpEYZ4JLUKANckhrlJKaA/ldBbgbz+39kyfb953/xjLZrX/zV1X1Jn/uKv/La1f1saUwcgUtSowxwSWqUAS5JjTLAJalRTmJqU9v/5NDs6hKTlNJW5ghckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNarPMzFfkOSPkxxK8kiSt3XtFyW5P8nh7v3CyZcrSTqtzwj8aeAdVfUPgFcA/yrJS4HbgH1VdSWwr1uXJK2TkQFeVceq6nPd8jeAQ8BlwE3A3m63vcAbJlWkJOlMKzoGnmQncBXwAHBpVR2DQcgDlyzzmbkkB5IcOHny5NqqlSR9R+8AT/L9wB8Ab6+qv+37uaqar6rZqpqdmZlZTY2SpCX0CvAk5zII7zur6u6u+XiS7d327cCJyZQoSVpKn7NQAnwEOFRVvzK06V5gT7e8B7hn/OVJkpbT526E1wC3AF9I8lDX9ovAe4G7krwF+DLwM5MpUZK0lJEBXlWfBbLM5uvHW462rP3LPIPSW8hKy/JKTElqlAEuSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjDHBJalSfS+nVsPn5ja5A0qQ4ApekRhngktQoA1ySGmWAS1KjDHBJapQBLkmN6vNItTuSnEhycKjtXUmeSPJQ93rtZMuUJC3WZwT+W8CNS7R/oKp2da9PjLcsSdIoIwO8qvYDX1+HWiRJK7CWKzFvTfKzwAHgHVX1f5faKckcMAewY8eONXydmrXc8y6nyPxC/0te53bPTbASbSWrncT8EPDDwC7gGPD+5Xasqvmqmq2q2ZmZmVV+nSRpsVUFeFUdr6pTVfUM8GHg6vGWJUkaZVUBnmT70OobgYPL7StJmoyRx8CTfAy4Drg4yVHgPwDXJdkFFPA48NYJ1ihJWsLIAK+qm5do/sgEatlQCwsLG11Cb94iVhJ4JaYkNcsAl6RGGeCS1CgDXJIa5TMxtSH2n3/vRpewdp/pcYXpK6+dfB3ashyBS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSo7wSsyGnb3l75MjFS26/4oor1rMcrVLf52f67EyN4ghckho1MsCT3JHkRJKDQ20XJbk/yeHu/cLJlilJWqzPCPy3gBsXtd0G7KuqK4F93bokaR2NDPCq2g98fVHzTcDebnkv8IYx1yVJGmG1x8AvrapjAN37JcvtmGQuyYEkB06ePLnKr5MkLTbxScyqmq+q2aqanZmZmfTXSdKWsdoAP55kO0D3fmJ8JUmS+lhtgN8L7OmW9wD3jKccSVJffU4j/BjwJ8BLkhxN8hbgvcANSQ4DN3TrkqR1NPJKzKq6eZlN14+5FknSCnglpiQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcpnYk6RI0eOnHX7Vnxm5v4v/lDvfa998VcnWIk0fo7AJalRBrgkNcoAl6RGGeCS1CgnMXV2+/eP3ufaaydfR6s+0+PP75X++Wl1HIFLUqPWNAJP8jjwDeAU8HRVzY6jKEnSaOM4hPITVfW1MfwcSdIKeAhFkhq11gAv4A+TLCSZG0dBkqR+1noI5Zqq+kqSS4D7kzxaVc+adu+CfQ5gx44da/w6bUp9zlTR8pY7U2VhaHnO8ZHOtKYReFV9pXs/AXwcuHqJfeararaqZmdmZtbydZKkIasO8CTPS/L808vAa4CD4ypMknR2azmEcinw8SSnf87vVNX/HEtVkqSRVh3gVfXnwMvHWIskaQWm5lL6hYWF0TtJrZqfH72PE51bjueBS1KjDHBJapQBLkmNMsAlqVFTM4mpRQ4fPrNt8UOPe97He//5946hIK3U/JP9r3Cd+z7vKb4VOQKXpEYZ4JLUKANckhplgEtSo5zE3EKOPPXUooYjS+847Kmn+PqpUwBctG3bBKraXM74M1rkiuc8Z50qWZn5J/c/+/azy5jb7dWa08QRuCQ1ygCXpEYZ4JLUKANckhrVzCTmtN8u9u67L97oEqbC6QnX5ZxtInb/F39o5OePbNvGtS/+6qpq2wzmP/jms+/wyu9e0dl3wnN+ocetbpf6mYtukTu//0fO/EDPq4XP+p2rmLddSZ961zGBCWRH4JLUqDUFeJIbkzyW5EtJbhtXUZKk0dbyUONtwK8DPwm8FLg5yUvHVZgk6ezWMgK/GvhSVf15VT0F/C5w03jKkiSNkqpa3QeTnwZurKqf79ZvAf5xVd26aL854PTR+5cAj62+3HVzMfC1jS5inW3FPsPW7Ld9bs8VVTWzuHEtZ6FkibYz/m9QVfPA+Kd0JyjJgaqa3eg61tNW7DNszX7b5+mxlkMoR4EXDK1fDnxlbeVIkvpaS4D/KXBlkhcmeQ7wJsBHt0jSOln1IZSqejrJrcCngG3AHVX1yNgq21hNHfIZk63YZ9ia/bbPU2LVk5iSpI3llZiS1CgDXJIataUCPMm2JH+W5L5u/aIk9yc53L1fOLTv7d0tAh5L8k+G2ncn+UK37VeTLHU65aaQ5IIkv5/k0SSHkvzYtPcZIMm/SfJIkoNJPpbkvGnrd5I7kpxIcnCobWx9TPK9SX6va38gyc717N9SlunzL3f/fT+c5ONJLhja1nyfR6qqLfMC/i3wO8B93fp/Am7rlm8DfqlbfinweeB7gRcC/wfY1m17EPgxBufBfxL4yY3u11n6uxf4+W75OcAFW6DPlwF/ATy3W78L+BfT1m/gWuBHgYNDbWPrI/Avgd/olt8E/N4m7fNrgHO65V+atj6P/DPZ6ALW8S//cmAf8Cq+G+CPAdu75e3AY93y7cDtQ5/9VPcXvh14dKj9ZuC/bnTflunv+V2QZVH71Pa5q+8y4C+BixicZXVf94986voN7FwUZmPr4+l9uuVzGFzFmEn1ZbV9XrTtjcCd09bns7220iGUDwK/ADwz1HZpVR0D6N4v6dpPh8BpR7u2y7rlxe2b0YuAk8B/6w4b/WaS5zHdfaaqngDeB3wZOAb8TVX9IVPe7844+/idz1TV08DfAD84scrH4+cYjKhhi/R5SwR4ktcBJ6qq71MhlrtNQK/bB2wS5zD4dfNDVXUV8C0Gv1YvZxr6THfc9yYGvzb/PeB5Sc72FIOp6PcIq+ljU/1P8k7gaeDO001L7DZVfYYtEuDANcDrkzzO4K6Jr0ry28DxJNsBuvcT3f7L3SbgaLe8uH0zOgocraoHuvXfZxDo09xngFcDf1FVJ6vq74C7gR9n+vsN4+3jdz6T5BzgB4CvT6zyNUiyB3gd8M+rO/7BlPf5tC0R4FV1e1VdXlU7GUxO/FFVvZnBpf97ut32APd0y/cCb+pmpV8IXAk82P1a+o0kr+hmrn926DObSlV9FfjLJC/pmq4H/jdT3OfOl4FXJPm+rt7rgUNMf79hvH0c/lk/zeDfzKYbjSa5Efj3wOur6smhTVPb52fZ6IPw6/0CruO7k5g/yGBi83D3ftHQfu9kMHP9GENnHwCzwMFu26+xiSc5gF3AAeBh4H8AF057n7t63w082tX8UQZnIkxVv4GPMTjG/3cMRo5vGWcfgfOA/w58icFZGy/apH3+EoPj1g91r9+Ypj6PenkpvSQ1akscQpGkaWSAS1KjDHBJapQBLkmNMsAlqVEGuKZSkkry0aH1c5KcTHcnSmkaGOCaVt8CXpbkud36DcATG1iPNHYGuKbZJ4Gf6pZvZnAhCABJntfdX/pPu5t93dS170zymSSf614/3rVfl+TT+e791e/cTPcH19ZkgGua/S6Dy6nPA/4h8MDQtncyuFT6HwE/Afxyd7fGE8ANVfWjwD8DfnXoM1cBb2dwr+kXMbjHjrRhVv1Uemmzq6qHu6eq3Ax8YtHm1zC4wdm/69bPA3YwuLHRryXZBZwCXjz0mQer6ihAkocY3Jv6s5OqXxrFANe0u5fB/cGv49n3dg7wT6vqseGdk7wLOA68nMFvqP9vaPO3h5ZP4b8fbTAPoWja3QH8x6r6wqL2TwH/euh5iFd17T8AHKuqZ4BbgG3rVqm0Qga4plpVHa2q/7zEpvcA5wIPdw/JfU/X/l+APUn+F4PDJ99an0qllfNuhJLUKEfgktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ16v8DTXbWHZJrmI8AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sns.distplot(SK027[\"Mean\"], bins=20,color=\"red\", kde=False,rug=False)\n", "sns.distplot(SK063[\"Mean\"], bins=20,color=\"grey\", kde=False,rug=False)\n", "sns.distplot(SK099[\"Mean\"], bins=20,color=\"blue\", kde=False,rug=False)\n", "sns.distplot(SK101[\"Mean\"], bins=20,color=\"green\", kde=False,rug=False)" ] }, { "cell_type": "code", "execution_count": 119, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnEAAAGtCAYAAAB5mSLxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdaYxd2XXo9//aZ7hTzROLM9mTWuyW2pbaiizr2XoeJSCw/cEPEJDEAp4CIYaBAAmC2ML74Hx5gI0EMeAENiLEhgfk2Rb88mAHcBvyEFlyNLYm98huNtkkizVPt+54pr3y4VxWU91sdlNm8fJWrR9A8HLfaZ/LqnPX2XuvtUVVMcYYY4wxo8UNuwPGGGOMMebuWRBnjDHGGDOCLIgzxhhjjBlBFsQZY4wxxowgC+KMMcYYY0aQBXHGGGOMMSPowII4EfkDEVkXkedvc9//ICIqInO3tH1WRC6JyEUR+blb2j8oIs8N7vsdEZFBe0VE/nzQ/nUROXdQx2KMMcYY86A5yJG4PwQ+/uZGETkN/Axw7Za2C8AngScGz/ldEQkGd/8e8Bng0cGfm6/5aWBHVR8Bfhv4rQM5CmOMMcaYB9CBBXGq+iVg+zZ3/TbwPwK3Vhn+BeDPVDVR1SvAJeBDInIcmFDVr2pZlfiPgV+85Tl/NLj9F8BP3RylM8YYY4w57ML7+WYi8vPADVX93pvirZPA127599KgLRvcfnP7zedcB1DVXESawCyweZv3/QzlaB6NRuODjz/++D05HmOMMcaYg/Stb31rU1Xnb3fffQviRKQO/DvgZ293923a9A7td3rOWxtVPwd8DuDpp5/WZ5999h37a4wxxhgzbCJy9e3uu5/ZqQ8D54HvicjrwCng2yKySDnCdvqWx54Clgftp27Tzq3PEZEQmOT207fGGGOMMYfOfQviVPU5VV1Q1XOqeo4yCPuAqq4CfwV8cpBxep4ygeEbqroCtETkw4P1br8M/OXgJf8K+NTg9i8B/zBYN2eMMcYYc+gdZImRPwW+CrxHRJZE5NNv91hVfQH4PPAi8DfAr6pqMbj7V4D/kzLZ4TXgmUH77wOzInIJ+O+BXz+QAzHGGGOMeQDJURu8sjVxxhhjjBkVIvItVX36dvfZjg3GGGOMMSPIgjhjjDHGmBFkQZwxxhhjzAiyIM4YY4wxZgRZEGeMMcYYM4IsiDPGGGOMGUEWxBljjDHGjCAL4owxxhhjRpAFccYYY4wxI8iCOGOMMcaYEWRBnDHGGGPMCLIgzhhjjDFmBFkQZ4wxxhgzgiyIM8YYY4wZQRbEGWOMMcaMIAvijDHGGGNGkAVxxhhjjDEjyII4Y4wxxpgRZEGcMcYYY4ZqdafghWsZ3cQPuysjJRx2B4wxxhhzdPVT5ZuXUlSVZtfzkccrw+7SyLCROGOMMcYMjXMQDKKROJThdmbE2EicMcYYY4YmDoV/daHCTsdzYjoYdndGigVxxhhjjBmq8ZpjvGaTg3fLPjFjjDHGmBFkQZwxxhhjzAiyIM4YY4wxZgRZEGeMMcYYM4IsiDPGGGOMGUEWxBljjDHGjCAL4owxxhhjRpAFccYYY4wxI8iCOGOMMcaYEWRBnDHGGGPMCLIgzhhjjDFmBFkQZ4wxxpihavU81zZz8kKH3ZWREg67A8YYY4w5utJc+fKLCXmhrM0E/MgjlWF3aWTYSJwxxhhjhsZ7KHx5O8uH25dRYyNxxhhjjBmaaiz8yKMxW3ue88eCYXdnpFgQZ4wxxpihWpwKWJyyAO5u2XSqMcYYY8wIsiDOGGOMMWYEWRBnjDHGGDOCLIgzxhhjjBlBFsQZY4wxxowgC+KMMcYYY0aQBXHGGGOMMSPowII4EfkDEVkXkedvafufReRlEflnEflPIjJ1y32fFZFLInJRRH7ulvYPishzg/t+R0Rk0F4RkT8ftH9dRM4d1LEYY4wxxjxoDnIk7g+Bj7+p7W+BJ1X1/cArwGcBROQC8EngicFzfldEblb9+z3gM8Cjgz83X/PTwI6qPgL8NvBbB3YkxhhjjDEPmAML4lT1S8D2m9q+oKo3d0b7GnBqcPsXgD9T1URVrwCXgA+JyHFgQlW/qqoK/DHwi7c8548Gt/8C+Kmbo3TGGGOGKy+U11ZzVneKYXfFmENrmGvi/i3wzOD2SeD6LfctDdpODm6/uf37njMIDJvA7O3eSEQ+IyLPisizGxsb9+wAjDHG3N7LNzJeuJbyjVcTdtp+2N0x5lAaShAnIv8OyIH/62bTbR6md2i/03Pe2qj6OVV9WlWfnp+fv9vuGmOMMcY8cML7/YYi8ingPwd+ajBFCuUI2+lbHnYKWB60n7pN+63PWRKREJjkTdO3xhhjhuPxkxG12NGoCNNjVgjBmINwX3+zROTjwK8BP6+q3Vvu+ivgk4OM0/OUCQzfUNUVoCUiHx6sd/tl4C9vec6nBrd/CfiHW4JCY4wxQxQGwsOLIYvTwTs/2BjzAzmwkTgR+VPgY8CciCwBv0GZjVoB/naQg/A1Vf1vVPUFEfk88CLlNOuvqurN1bC/QpnpWqNcQ3dzHd3vA38iIpcoR+A+eVDHYowxxhjzoJGjNnj19NNP67PPPjvsbhhjjDHGvCMR+ZaqPn27+2yhgjHGGGPMCLIgzhhjjDFmBFkQZ4wxxhgzgiyIM8YYY4wZQRbEGWOMMcaMIAvijDHGGGNGkAVxxhhjjDEjyII4Y4wx95yqsrpT0Oz6YXfFmEPrvu+daowZTarKc1czNlueC6ci207J3NEryzkXb2Q4J/zEExXGazZmYMy9Zr9Vxph3pZsor6/ntHueV1ayYXfHPOD6WbkbkPdKkh2tnYGMuV9sJM4Y865UY2Gq4djteBanbBTO3NnjJyOcQKPqmJuwnxdjDoIFccaYdyVwwkcvVMgLiEMZdnfMA64SCe87Gw+7G8YcahbEGWPeNSdCbGcNY4x5INiaOGOMMcaYEWRBnDHGGGPMCLIgzhhjjDFmBFkQZ4wxxhgzgiyIM8YYY4wZQRbEGWOMMcaMIAvijDHGGGNGkAVxxhhjjDEjyII4Y4wxxpgRZEGcMcYYY8wIsiDOGGOMMWYEWRBnjDHGGDOCLIgzxhhjjBlBFsQZY4wxxoygcNgdMMYYY8zRpar889WMzT3PhdMRx6eDYXdpZNhInDHGGGOGppsoV9dzOn3PqyvZsLszUiyIM8YYY8zQ1GJhaqwMR2wU7u7YdKoxxhhjhsY54V+9t0JeQBTKsLszUiyIM8YYY8xQiQiRRSR3zaZTjTHGGGNGkAVxxhhjjDEjyII4Y4wxxpgRZEGcMcYYY8wIsiDOGGOMMWYEWRBnjDHGGDOCLIgzxhhjjBlBFsQZY4wxxowgC+KMMcYYY0aQBXHGGGOMMSPIgjhjzLt2ZS3nm5cSml0/7K4YYw6ZwuuwuzBybKcyY8y70k08z11NAUgy+Oh7K0PukTHmMPBe+crFlO1WwRNnIh5ejIbdpZFhI3HGmHclCoVqLACM12TIvTHGHBa9VNluFQDc2C6G3JvRcmBBnIj8gYisi8jzt7TNiMjfisirg7+nb7nvsyJySUQuisjP3dL+QRF5bnDf74iIDNorIvLng/avi8i5gzoWYwxEgfATT1T5yOMV3nfWrpSNMfdGvSKcmgupxsLDizZBeDcOciTuD4GPv6nt14G/V9VHgb8f/BsRuQB8Enhi8JzfFZFg8JzfAz4DPDr4c/M1Pw3sqOojwG8Dv3VgR2KMAaASCXMTAU5sJM4Yc2+ICB94KOZnf6jGyRkL4u7GgQVxqvolYPtNzb8A/NHg9h8Bv3hL+5+paqKqV4BLwIdE5DgwoapfVVUF/vhNz7n5Wn8B/NTNUTpjjDHGmMPufq+JO6aqKwCDvxcG7SeB67c8bmnQdnJw+83t3/ccVc2BJjB7uzcVkc+IyLMi8uzGxsY9OhRjjDHGmOF5UBIbbjeCpndov9Nz3tqo+jlVfVpVn56fn/8Bu2iMMcaYg7Db8Vxey0lzKzNyN+53ELc2mCJl8Pf6oH0JOH3L404By4P2U7dp/77niEgITPLW6VtjjDHGPMCSTPn/Xkp4/mrKd66kw+7OSLnfQdxfAZ8a3P4U8Je3tH9ykHF6njKB4RuDKdeWiHx4sN7tl9/0nJuv9UvAPwzWzRljjDFmRChvTKOp1RG/KweWBiIifwp8DJgTkSXgN4DfBD4vIp8GrgH/BkBVXxCRzwMvAjnwq6p6s1jMr1BmutaAZwZ/AH4f+BMRuUQ5AvfJgzoWY4wxxhyMaiQ8dS5kacvz/nNWvuhuyFEbvHr66af12WefHXY3jDHGmJH0zDPPsLq6es9ez6vjtdYinpC5RsZssHLPXntxcZFPfOIT9+z1hkFEvqWqT9/uPivIYowxxpih8TjyQlAKCrWw5G7Yp2WMede6iWevpyxMOJyzsozGHEUHMbL1v//+fyTROp/5L36a8dqDUjjjwWdBnDHmXcly5UsvJqSZcmou5AMPxcPukjHmkGi4PRrsWQB3l+zTMsa8K1mhpHl5u5ccrbW0xhjzILIgzhjzrtQrjh8+H7Ew6XjspA3iG2PMsNmZ2JhD6l5nkAGs7BS0gvPUa1UWwqvEktyT1z0MGWTGmB9criGZVvBebb3tXbCROGPMO2r7Kdbz07T8NHlR4BEyrQy7W8aYQyDLlbX8HBvFKb73ejbs7owUG4kz5pC6VyNbeaH89bf7oMr3vvstYunzMz/5NO8/FxEGdsVsjPmXyQrFEwDQtfW2d8VG4owxdxQ4mKyXwZonoK8NskItgDPG3BP1imM6WKXh9njfWdux4W5YEGeMuSMR4SPviXnqXIQb7Ia3tluQFXbFbIy5N8Zck9lghYm6hSV3w6ZTjTHv6Huv5yxv5+TERCQ8tBgS2UicMeYAdBPPTtuzMBXYeeYdWBBnjHlHza4HQMQz7Va5cNqmPIwx985OsUBfGyxv5zx/LaOfKvOTAT/6HkuguhMbtzTGvKP3n4uYmwgoNGDTn+KfLYPMGPMvVHilm3g6fU/LT5NpzMXlbL+oeJLZko13YiNxxph3ND8R0KgIf/ul8uza7tvJ1Rjzg/Ne+fKLCXtdz0PHQgJy+tpgcTJg5lTA2m7BuQULUd6JfULGmHelXnFMuTV2/CKVCCvKaYz5gSU57A2Waaw1PV4dASndFN47FXBsKhhyD0eDTacaY+4oyZSvXUz46sWEgghBWdkuuL5VDLtrxpgRVYuFR09ETDUcjx4PQRxO9C1TqNttz+qunWvejo3EGWPuaGkrZ71ZnkT7vkah5WmjHtsonDHmB5NkyqnZgPeeKpOkZoMbJFrnqXMRS5s53VSZaji+9koKqjxxJubhRQtZ3sw+EWPMHc2MBQQup1Alo4YCC5OO+Umb7jDG3L1+qnzxhT5ppjxxJuLhxQiHx1HQ7CrfvpwCMD3mQMuROUtyuD0L4owxd9RNPAuTjsUpx3e+A6HkZIWNwhlj7t56s2C77UkHQdlOW+lnykZxCkV4aSkFEVBluiEcn45Ic3j0hIUrt2OfijHmbSWZ8q3LGajSS5WAjK5OsDhly2mNMXdnZbvgm5cSVJVG1XF9s0Ak59RcgAAKjNccT5wO+MrLKVfWC55+OOSR4zbq/3bsTGyMeVuBg8rgUs8JFERUpMfKboGqTW8YY969dLBVn4gwVhVmxx2qsL5bsBBeJabHbsezvO0Jg3Im9ca2JTXciQVxxpi3FQbCI8dDVGGyLsSSAFCNhGe+3efvvtenl1owZ4y5s36qpJnn9HzI46ci3n8uZqzm6CTK5bWcdjFJRpV+qqzs5MxPBtQqjrMLNgp3Jzadaoy5o9fXC0TgynpBjSaB1FGFvFDyQtncKzg9Z6cSY8zbe/a1lO1WQRgIP/JozCvLOU+eiVCFTt/T1mmq0gFgbjLgzFzI3IRjabPg+Wt9zs2HnD9m55k3s0/EGHNHx6Ycl1c9YzVh1y8gUu6lWq844hAWLEvVGPMObq6+UODbr6UkmXJjq+DcsYBLK55cIxJf5ckzIZfXPN98NWFuImCn7Sm88sL1zIK427BPxBhzR0+eiTl/LMQ55StfzSkIWZgM+KHz8bC7ZowZER98OGJpyzE/EfDi9YxOUpBknnPzFU7NBHz3uxkqAdc2C/qDrZl7qbIw5VjZLjg2aau/bseCOGPMHa3tFnzzUkolEuaDJTwB7z/3o8PuljFmhNQrjsdOlIHYhx6N+Zvv9EDhn15K+On3V6hKl0TrHJ8OCQNo9ZQz8yHTDaF/BqrRkA/gAWWhrTHmjlZ3C7xXeomn7afo6Ri9xJIZjDE/mCgUxqqOMBD6mfIPzydkWmHWLXFlPeeFaxnjNWFmzCEi1GJBxGpT3o4FccaYOzo7HzJWc0zUHW0/TctP873Xs2F3yxgzQvJCuXgj4+pGDsDTj8Q8cjzi/LGQXqIUBLR1+vuKAN98nu3W8PZsOtWYI269WfDc1YzpMcf7z4Ws7yr1ijDVKK/xphqOn3xflTRXvvyVAo+jEn3/VXGn7+kmytxEWTJgt+1ZnA4IA7t6NsbAxRs5r62WF3+1CMZqjgunI/qpsrXnSbWKaMHMmCMIhPecDOkmni+/mJDk5Zq6kzMWsryZfSLGHHGXVnI6fU+n78kLZXWnwDnhRx6JeH2joB4LT5yJiEPhWPg6qa/y1LkIr0o/Vbwq//h8SuGVhxdDrm0WZLlyfDrgRx6tDPvwjDEPgHCQxK7Aty+npDk8cjziwumIDz0a86Wv9lECPPD48ZAXrmeE7o09UzeanpMzQ+v+A8uCOGOOuOPTAZstz3hNCAYLLLxXXlnO2Wl7oCwjMj/h2CkWSbTG9c2CtWbB+m7BRN1R+PJE2+4r+aDAepoP42iMMQ+iR0+ENKqCAN96rdzg/sZWwU7Ho14JSUm0ThwKz13LaHU9XqFREbba5f7N5q0siDPmiDt/LOTUbEAQQJZDJcoYr5YnzJ12SruvvLqckRUhfa0DcG0zY69bPr+XKhdOR7T7yntORjQ7no29goesppMxZsCJcGo2ZLvtOTMfstvxVGNhfbe86ovok1FlfbegEgu5LwO4JFPqsXBxOeeETae+hX0ixhiisFy7VonKunBQBmcffjTmny6mbLc9WZERkJFonfPHQrJcuL6Zc/5YyMmZACfQSZRLqzm1WKjGth7OGPOGV5YzXl7KiELhxx6vcGk1o5cqYzWHE1/OtQKTNWGvqySZRylH7+LQzie3Y0GcMeYtXlvNeeFaSjWW/ath74WCiFAy0gxqMbzvbERWwN98p08clkkQ263yyvrEdMDxGdvNwRhT2uuWUVqWK9+9krLb8cSRcH7B8ayfIiPmxExAJYJKCCA8fiKiXhWOTdm55HYsiDPGvMXGXhmI9VNlbtyRZMrk2OBOheubBa2eBxFmxx3eK/0UoklAhDiEyYZdORtj3vDeU2XIMV4Teqmy2/GETmj3AYGYPmmhXNvwdFPPI4sRDy2G+zMFb2e3U67dvZlRf5RYEHfEqSqru55aLEfyF8Dc3mPHQ9JcGauUU6Yiwk5bETwpNYri5kaIyvEpR5or1Uh48kzMe09B4CCy8iLGDN0zzzzD6urqsLtBy0+TapUJt0kkGV6FzeIkHseSW6fXqqME/P0Xv46XcnuG/muXeOkrBYU69vwcATlV12WrOIEjZz5Yoq91NouTCDAXLFFznQM/lsXFRT7xiU8c+Pu8GxbEHXGvLOdcvJEhIvzEExUm6hbIHVUvLWW8tppzei7gqXMxP34hQFXpZ7C5V9ZvUhyRJAQhPDYfUYuE0/MB3VRJMig8VCML3ox5UKyurrK8vMzk5OR9eb+CiG0eQnFM8zoRPTKqbMk0AD2dZIw1FEdLyvW3mY6jEqISkGY5UBDTZiWdRihweLpSTgVEGpMJQIhqlZwqqWQI0E4LPAcbxDWbzQN9/btlQdwR1x/U4FFVssKqYh9lVzdyvFeurudkeTlC+/jJkKmGsLFXjq7VpUVfG5ybD1nZ8fRSpZsql1fLeiJxCO87Gw/5SIwxt5qcnORjH/vYfXmvtVbEla0qANP1syS5I3SeyTTEeyF0nty/HxHPhApp4ZiuZXSzANXy/sWJjLQQ1lvluWS8mtHqR4go0/WMa9tVxioFqmdRhNApx8YzTk/P4g74GvKLX/ziwb7BXbIg7oh7/GRE4KBRccyO28LRw0JVSXPesrPCnZxbCHltJef4TMDSZhmUXd0oyApFgGsbBYLHSUG7p2wO1s1tt8A5wXu1kVxjjripWk4tLii8kHmhmwZAwLmZHrVIWW7GNPsOVcfxiYTL21XaScixiZTCw1o7Ymm3QiUsQBQnEDsldJ5jEynLzQqN2FOLCnpZiAAzjZyzM8mwD30oLIg74iqDdUzmcPn6qynruwVnF0LqFeHijZwTMwGPnwx5fb2cGl2cDtjYK6jF5WbU5+ZDzi+E+4Hfyk7BuYWQvCjLhixMOL6j5ZTMequgXnH0M+XhxYjxmpAVt19YvNUqqEZCrSJcXS9wDk7NOF5cyklzeOJMZFOwxhwSlVB56kRZRHKzE/JaEpAVwuWtKo2K59x0n41OSFYI3SygFpYzQJ00IBAFFRCYqHqm6wl5IVzeqgGw0ymDNhFoVJTjE326mePEZDqswx06C+KOuLxQXl/PqVccJ6wcxKHgve4X0FzdKQgGo2RLmzm9xLPV8ogI5xYCrqzlOCe870zIc9dyBPjPHovxHmbGyp+JVs9z4VTEyRnH35HQ0wZnZkPOLgRstzxzE45WT7mynnN8uvwZev5axsyYY7wmvLyUEbjy/V4bTLtu7gXc2Cr7WI3Kbb2MMaPn8laFjXbEiYmUyVrBWitipp4zU8+phJ6njre5ultlpxvRSwOywhEHEAdKPxOOT6QkubDZiXACtajg5FQGqryyXkdRnChehal6wXQ9oZMGzDcyAgeqsLIXo8DieMrKXkw/d5yeSqiEh3+JkAVxR9xLSxlX1sov1o9eqDIzZtNhw3CvM8iaxSxdnWDcbeM1oOnnqLsWCnT9BA7Py9Khq+MAvPidFr3B7ee/06GvDQC+/KUWfR1HgTHZYbflKSTn//nrL5BonVQrVKSHJyDTGEGJ6JNSXjlXpEsy2OXhJWnSGYzkXXab7PlZFOFasMI33N49O/abHqQMsqOom3heuJbRqDreeypExEZbDxtVWG9HoMJaO2arq/Qzx3Y3ZK6RsdGOiUPP+Zk+O92QVhKw2wuYquWstSIyHzDXyHloLmG3F1KoMFkt8F7Y7pYXdoIwV09YbVfY6kQsjGXs9QJu7Macm0koFK7tlHs0d1NhqxMPngcPz/WH9dHcNxbEHXHu5olV5MAXhJq3d68zyEI6TAxuB8AM1wHwOGCCkB6OgpRjBKRU2KHHWRQIWSblEZSACjukUi5S7mqOujoO2Os7CkAlo1CIaJPJOIGmOFr0aFBlhyrXKAbvEbOOMoWghDSZZGXQn+Se55M9aBlko+BeX0hsFYtsDr5Qz45tUnXde/baFqA/GETg2HjGRjticTylnQT0M0cl1MFaOAb/9kzVC0DY7MQ8cbxDVgidNOBGs0JeCFkhBEE5cnZtp0LhYbKWM1bxeC8EAknu2GhH+wHe8l5EJVTSQogDpRZ5nCsLk9ciP6yP5b6yIO6Ie/xUuSlxvWJ14obtX5pB5pX99SJ3q5M6Xlip41U4PfUQS80KWSGcn10gL6CVBDw2P8tGJ2avH3ByMmGzE7HXDzg7nbDbDdnuhRwfT7jWrKJeODMzw8nJ07e8y4Uf+Nju1oOWQXYUxZJQFAFCQSjZsLtjDsj5mYTzg6SCwpfnikbsSXLh1Y0a292QF9cazNYzFOhlwtJuTD0u6KQB1aiglQYEDlChUEEBP3jt1VbMyl5E4QUR5dpOTFJI+R6Zo5M4VJWHZnssjOfMNXLSwjFRLYb4qdw/FsQdceVaJfsxGHW7vYBX1mtEgfLIXI/L2+Xo2Xvme+VJUWGscvsr08LDVick9+VobLMfDlL9Ybsb0EkDUGF5r0It8kxUC9pJsJ/+304da+3y9non3l+YvNEKQeH4ZHrbUV6vlPutpo6l3QpjlYKxuOCVjRpx6LlwrEcUHP41LQ+KgxjZ+j/+4D8QUPBf/9v/6p6/tnnwBA6maoMN7QNltpGR5I68EOqx5+HZHpc2azR7ETONjCjw9HPHiYmU7W6IKjzWyNjqlEHb9d2Y3V5E6KARF3iFrHDUnfJDJ9u8tFonLaAaKZO1m2tslWp0NAI4gKEMvYjIfyciL4jI8yLypyJSFZEZEflbEXl18Pf0LY//rIhcEpGLIvJzt7R/UESeG9z3O2KLLswRtd0N8SokueNGs0IvDeilAdd2Kjy3Uuf5lQabnZCr2xUub1XIb4nnXlqrc2O3bAucp9kLAGW6nnNiPEW1/LVq9QOubFW5vlMp18FQBmJbnZBO6vAKae4QUepRQTcLuL5bYaVZBnidxPHaZpXtbshaK+Ib18Z4fqXO1Z0KO92Q6zsVbjRjCi/00oBWYok2oy6WhEDyYXfDDMnCWEY9LmgnjqvbN6sgKL1cYBCQoUI7CaiGSi1SlpoVnFOqodLNAsYqOe3UMV3PmalndLKyrtyrG3U6aUDh4T0LvSORxHA7930IRkROAv8tcEFVeyLyeeCTlHMtf6+qvykivw78OvBrInJhcP8TwAng70TkMVUtgN8DPgN8Dfhr4OPAM/f7mIwZtoWxjL1+SBx4Tk4mdFKHIlRCX46MURbhbPXLX3kHJIWUVc4ThwjUYyV0UPjy8aem+ry6USfNywyyqVrOqxs1RCAvBCdKNfL00pBq6BmvZHTSMriLXFnfqRgsfI5Cz+peTDcN2OyE1ONi/+Q90yin2qLAszie0ssccahMVOzL35h/qe3tbXq93tCWGCQ02JGH2ASWrrRJGMNLSGtplS6zZNSZ5SJdFkilwYQu02eCDnNMcZU+06gE7C23KYgopMLWjQzFoRIgWlBcf/G+Hc/u7i5J8uDUpBvWPFoI1EQkA+rAMvBZ4GOD+/8I+CLwa8AvAH+mqglwRUQuAR8SkdeBCVX9KoCI/DHwi1gQZ46gsYrnh06+kR7w+EIPgFrsyb1QeGFhLOViUlZF72RuP6Crx2VZgKlazvL6BdgAACAASURBVGwj4+J6jUro2e2G+4uUCxVe36mSe5ioFvSzABEInSJSZqmlhaOfl9XT25mjHhfkXuhnjsubNWrRG9Msx8YzrqQBM/Wch2b7TNVyJqsFlVCZaRz83ofGmPsjokeoPQoqxLRIZYyAnIw6iBDRI9UJypLiSkFILjUqdEh1bP91yvvL5CwHTHGdnk5TY2c4B/aAuO9BnKreEJH/BbgG9IAvqOoXROSYqq4MHrMiIguDp5ykHGm7aWnQlg1uv7n9LUTkM5Qjdpw5c+ZeHo4xD5zdXsDL62WJj4dm+uz0InJfVlJvxOV6tolKzm4vJM2FsYoyXvEU3pVr5+JyrrXZD8h8OUU6P+bxPqQSQi3ypIUjLcoAbbKW0U0dWREQB56JSk47jeimMF7J6WcOJ8pELccrnJtJWNqtDNbdKZc2a+x0Q8arOU8s9ob50Zl7KM2V3WLekhqGbGZmhk6nc9+23Xo7qiAyz+peRDdzzNYzXl6voyrMNtL90iCN+GRZCikNODGR0MsdzV7IY/NdXt2ssdsLeXS+x7mZxaEcxxe/+EUajcZQ3vt27vuauMFat18AzlNOjzZE5L+801Nu06Z3aH9ro+rnVPVpVX16fn7+brtszEjpZeU6E1TY6YXkRXl7sxPRTkJAaPZDAqfEge6PoLXTcvRMROnnZcp/5KARe0JX7lnYScsaUIvjKZPVgtw7mr0IB6SFEAUwVino54ITTy8X+rkwXctY26uQ5AFLu3GZLAHs9d9Y+9ZOAvRoLms5lF5aytjzM2wXx9hqHZ2F5ub2FHh5rca13QrjlYLxarl1VuZhrlHOAnjg5FTCw3M9TkwmVELPTjfCq3Bjr0LhHeMVTz+z9bI3DWM69aeBK6q6ASAi/zfwEWBNRI4PRuGOA+uDxy8Bt9YpOEU5/bo0uP3mdmNGzr1ct+JxtDgOQIdV2hynIKLFMnucJqPKGGt0OIaKEGifnAqI8KXlFhk1cqmxph2UiEJCrmuHBhvsSfmruKJdHBltOUaoCYripcK4LnGZGQqJqOgemZTTITs3OhRU8BJS1y0cGQkTjLGO4ugyQ5Vd/vHKvZkaedDWrRxFN7dvE5QosJyzw04VNtrlJvXzYznNXkDmhdl6jkhZL263V4Yc6+2IauTppiGRg+VmTCcLcMBmO6KdBqS5I3B+f7eG6VpOIMp2N+TYeLnLw3Y3LPdqjY7u1d8wgrhrwIdFpE45nfpTwLNAB/gU8JuDv/9y8Pi/Av6DiPyvlCN3jwLfUNVCRFoi8mHg68AvA//bfT0SYx5ADs8kN/b/PclSWZ+JGWKaTHGFnBoxTZwWVNlhl/MoAYIHAgIyIGSK19nVsxRSZU9PEmqXPlPU2KDHHI6ckC6F1HAkeGJUAhwewVPVXTJqjLFGSEKuFYSCHrM0WKdCC4AqVpx3lHX6npWdgmNTAeO1coLnPSdC5oJlQsmYqP8YXvWN4uLm0FlvR1zZGhQGTxNW9spdFHqTCe00oJs64sCz3QsRCQZlRwp6mWO6kdPeKUfXbpZEAggdVKOCZi+gEng6aYwTYa1V1orrpQEroecDp47uOtphrIn7uoj8BfBtIAe+A3wOGAM+LyKfpgz0/s3g8S8MMlhfHDz+VweZqQC/AvwhUKNMaLCkBjOSDnrdylYn5NWNcp3cwljKeidiUoWF8ZRj4xlZLmRemKnP0uyHXNmq0E4CavF5FgOllTjiQc02VaEWHaM3mNJYGEvZ7EbkhfDDp9q0koB2EtCIjrGXhMyPZXg9w9JuzHQtZ7sX0ksDRJSnT7fLIp/32IO2buWw+9orKZ2+5/JazkffW6GbKLPjjrorg/RXljNevpFzbMrxoUdi24LrELp1LKzQN/5/22lAczACN17NGSs8qsLSYFo1cMp0rcD7lI12xOmphOvNmOXdkKl6ym63XCt3o1khH2TOZ172Sx+p3lxvd3+O80EzlOxUVf0N4Dfe1JxQjsrd7vH/Hvj3t2l/FnjynnfQmEPGuTdOsbcW3m32yqK9TpQLi112eyFx6Jmp52SFw3vBBQVpHhK7fD9DLAwUV3h6aVlTzg8KBW+0o8H6ubIciffl+rsoKB/bTQPGKm9kqR7VE++oavU833s9ox4LP3Q+IsnL0ZKbshy++HxCXiiPnojo+jFyjXl9IwdV1nYK0hwqZSUamt0yiWaybrvFjLpjYxkO9qdTG7EnK4T5sZSX1sqabgtjGVnh9pOd1gYFw1/fLtfHqgrXdirs9UMasaeThDQGOzvMj2fUIs9uL+TYeJkss9UJmR5M1x5VVqrfmCNgulbwnmNdisEalcl6Ti91JJljrR3gVXh9p0K7HyKinJ3u082ESlgGWo3Y43HEQcFeEjLrPC0fUgmVThriB4HcdjcsFx2LEjnFI4MacgW9QQD3+EKXvSRkLC5sv94Rc2klZ7tVsA0EgXJ1wxMF8IGHQl5dhvG6cHW9DNLXmwVbRZlpiJZr5BanA5xAu+/pJsrXXkkB+NAjMYvTtlh9VG12QrJCODae7f9O3wy0VMtA31FuyfXkYod+7gid8vxqg7wQxisFrUFiU+BgtpGx1Q1ZGM/292SdqhWIvLEjBMCpqXT/9k43oJ87FsYyVvZimv2A01Ppod9+y4I4Y46I6VtOftO1gulaQVoIuQphoKhCu19Ol251I+qDxcLVyNNKYLqe0exF1EKlkwXkHvq54+x0j3ZSpVD2pzigrKJeeGGsUhA4WJxIiYKyCPBM3Qr5jqL5Ccf1LaESQpoBqmQ5XFot2G57ttswM+54ZTmn0DLJRtRTeDg+HXBuIeQfnuuTZFru1TxY/NTul2sxzehp9gIuDZZqZIUQDP5bT0ymNHvlWrhWUtaV3OmG7PVDklx4ZK7Pw7Nd2mnAicmMqVrOXr8crUsKRz3yzDQyXlht0M8cs42MR+f75fQp5YzCdjek1Q+YqOZc3KiBCntJwE6nHOq9tiM8ebw7xE/n4FkQd8QVXrm2UVCvCMem7CR61MSB8uh8H4Dcl8V7K6ESOqWVBAQCW50IJwyyxZTdXshULaOXBjSisgSAiFAJysLBixMptci/Za/Wo7otzmFyai5kbiIgCKCfKmkOtViIQ9ja8+S+/HKdGy+nRxuyC0CSeq5tKO2+J8nKn4M4hPPHyq8g2795dN06lbnXC2kPygelubA+2FO5EpRFx+txQbNXBlirrWhQVkj2p1j3BuWGbjQrFF7Y7IT08/INupkj9/Diap1e5jg1mXC9WQEVdntvfHdFrtxJpp85xg/5KBxYEHfkvbSUcXk1BxF+/EKlvDo2h5Jqudfp2yUShA7OTJfTEzvdgPG4YH4s5dpujbwoFyt7X25E3c/d/sm7USmoRGVtuRMTKdd2K/SygIdne0zXD/9J9KipxoMF5RH86ONltmBeKNttz7WNnO22EIZCL/F0/CROiv1v+sUpx1TDsddV3ns6srVwh8BEteCxhd5gFE73R+XC4I2LtsCV9Sh3eiGVoAyw6lGxv2tMkgt7g9tbg1E0pdy27/xMwisbVbLB3s3dQZC42w9xUp7TGhXP2ZmEfuaYH8uAhLRw1KLvv5A8jCyIMyVVK7R6iBUeXlit080c52cS5hoZhcp+xumbXdqsUXihmwUcG09ZbUWcmuzz+nYNB1QjpRZl7PZCpms5q62YThKw3n5jf9b1VkSj4omcsrIXs9EJOT6esTBuFfxH3aWVjBevZ0zUHT/6WMxGy1MoTNQd3is/9niVK2s5z4uiOJ46F9GoCmHgmKgJhYfl7TLAvxnI7XY81zdzjk8HzE3YrMAouXV5ROS6KOXatfFKecGXFUKvGeAQosCTFbDejpkfS1hqVvFemK5n3NitoChnphOubZcB227XEw1i/WYvYLqe00kdJydT4kDppI6Zel5enN6yZKTmDn8ABxbEHXmPn4yoRkKj6pges6viw6qfuf0r2LVWxNJuTObLdSmRU5JCmGvkZIXQTR3VyNNJAqLAs7wXD3Z8iKmEns1OxOJEzupeWRPq9e0K3aw8lewlZfJCN3O004BvXx9jrpGx2Q1BhWu7zoK4Q2B1t/yC3Ot6nn0tY6tVkORlUd9m1/PKcsojxyMETyQJZ+ZDvvZKytZeyux4QODKxIcgEH72qSpRKDx7KaWbeK5tFnziA1WrKTeiJm9de1sv8FoM1rEJoSi9wblIVejnAZVAaSUh52b77HQ9UO4u45wiKvtlijY7ZVbq6en0+96vHh+NYO3tWBB3xIWB8MjxaNjdMAesHntmGxntNGCymu8X4lzdK6ujo0InSdjqxuSFMNvIqEcFvUwofJlRWCj0soBG7NntRehg9zvn2F+3MllV9pKA8UpBsx8glNMeU9Vif9TOjC5V5eUbOWmm+9mm3X75JVqJHNONstTM2q4ncDmKI9MqvVRpdsrH7Xb9/rINVShUubqSs9ctg7o4lNvuqWh+cM1m857sBnO3WizSkXmq2mSKayigBHSYJyBhl4JdzlAQc/GVJio1qrFQ101CEnpMU2eLDrso8M/M8RUWqNL8voLm91Oz2XygalBaEGfMESDCfgKDV0gLR5KX60faWyEK7PVD0qIsBdC7ZeSuFnpyhVYvpKBMhujnZQ25RlyQ5I5qqIgouZZFOPf65f6qe/2AxYlsUB9KiN5m+taMho09z6vL5Ujq2YWQp87FdJOyyO9Y1bG2W5DkMDv+xqi+IrxyI2ev6/HAT1yICZxweTVjoua4spbz6nIZ3B+fCnjfOSsGfC8tLg5no3iA3WyBiJCCObpU6TPGhNtkTHJa/iQNaXLeXWU5O89eGoCmnK5uoOLYK+aYdh1iCdgpniCUhMzXCInIqVILmzi5/+eTRqMx1M/0zSyIM+aIcbcEdOW/e1zarNJJA7zCwnjG3FjK5a0aae4YqxZsdyKcgzjwnJlKeG2rRuAg9Y7JasFOt1xEPD+W0suqTFYLzs0k35e5Flt26sirxULgykSGqxs5qzsFT52LefJMzNcuJqw3C6oRfPTxmM2WJ9EaMQk7nTIDHmBmPODKWr6/Fq7dK38uwkA4ORtQiy2Au5c+8YlPDO29X1vNubSSsTgVcHWjDNTrFUfhtcxSFuFfPxnz2mrBf/rCd/AE/PjP/WvWm8X+yO3cRMDmXjlFe2wqYL3pOTET8MGHPzK043qQWBBnzBE3P5Zzo6n0M8FJuVB4c63Bick+qkKSO6brGf3c0U4cl7dqeK9M1wumajmdNGCukTJZK7i8VSV0yrmZ/pGuon5YjdccH3uywnrT89zVlCRTLq1mdBJlr1d+6fZTpZMoqzueivQAmKo7dtoFx6cd3ntWd3K2Wp7jMwGtfllQ+okzESdn7SvpMHl4MeThxfL/dHW3YGWn4D2nInqJcm0jx6vy/z6XUKs4arJHXxu8upwxPeZIcqVeEU7MODZbfrBLSEwcQqunfPdKysJkwImZo50EY78xxhgemu2zuhdRizw3muV6uWYvopu5cq/UuOD8TMJzK/XyCSIsTmRstkO2u+WayrTIBzWfhHYSUAlt/dth1Kg6TkfC9a2yVEi7p7zQSikUGhXoJspXXk555ERAqjUiSWhUy1pyu13lpaWcdr/cW3W6UU7BAqT243JobTQLkkyZGXP0U2WqIUzVY1Z2cjb2PN2+xxOiOKJQODMXsLxdkOXQqDg+/sNV+qnnhesZk3XhxnbBbttzfbNgdrxKJTq6V4zvOogTkY8A5259jqr+8QH0yRhzn01UCyaqBd7DWjui1Q94eK5M/08yIS+EF1fr5IVQiQuSzPHKeo04LEdfnFPqccF6O2KuUVZfN4dXGAg/fqGKqvKNSylrOwVRIEw1HP20LCK+vuuJ6CGUa+kAikLLOnMiZV3C+fLL2issTFh2/GEVR4KIoKpstQqurpdT6O89HVGosLVXkGoFQfno4xXWmsX+tPpO21OrCBeXc1a2C5aAyUFiTBy+fd3Lo+JdBXEi8ifAw8B3gZv5wwpYEGfMPTKsDLJb9RlnV84B0LqxjqNACRAK2nKcJM0Iiz1cbRYBqrqFo/yyvsxpEGFHW2xefH2IR/HgZZAdViLCk6cjphtliaKxqmOr1SfPlVpcJtQIsDBZJjBMNRwnph3XN8sv6bwoN0wPRMisLvShkmRKp++ZHnNM1h3/6kKFfqo0uwUXb+TkHtZ3PecXyuz3cvlFGdwtbRVs7HnOHwu4tpXz8o2McBCthIHw9MMxe11lsiGEwdEdhYN3PxL3NHBB1crBGnMQ7me2U9eP0fIz1N0eY9Kkr3ViSQgkJ/Qx3SIanErnSSi3zVlw14i1xY10gsyNMR1B3bXo+wlS6uRaEIugOGoupBGUAVSmEbnGVKVzX9fIPWgZZIfVS0sZry5nzE0EPHo8pNVTsrz86UlziOnhxLPd1v2yIi/dyMny8nFLW/l+PbhOYl8vh0WWK198vtwj96HFkIeOlbsrLE4HLEw6otBxaaWsL7jVKvjgwxGFRngcr66WmczzE45KJGwNRnHrsfDI2Yh+ooSBMDshLG8XzIyVRaaPqncbxD0PLAIrB9gXY46s+5lB9oXv9uinZWbY8WnHynZBJRJ+8n0VRIS9rifJYbtV8NpqTuFhbuIDVGPhr//+2yAhP/7RD/LkmYivvNyn8OCc8JHHY7p9pV4VWl1lakz4pxdTCq88cjziwmmrR3jY3Nx1YWOv4LmrGe2+R8sfLdICUmqg7GciOoE4LIO2Vl8JxFOvOBanHWfmjvYC9cOkn+n+Hrnru56r6wmFV95/LmKrpex2PLVYaPeVvFDiQAgkIwCa3YJGVdjc85xfCEmyjCvrBeePxbyynNPueZa2C6qRsN4siELhZ56qHtkRuXcbxM0BL4rIN4DkZqOq/vyB9MoYc2BmxwNubOVMNxy9tDzR9jPlyy8mtPvKE2dixmtC7pWzCyGtnme7VV4Nx9ItkxqmHF9+KSFJldkJx8xYwOvrBadnA776chm4TdbLUgLA/vuYe+OZZ55hdXV12N2g4ydo+jkCzfguZdJLhS4FIV6FVicHlG989UuMyRabxWlUHBXt0KeBCAQUnIwu8c3hHgqLi4tDLcdxmIzXHBdOR+y0y8LOLy2VtQWXt/1+uZCoIWS5IsBa0xOQ09UJFiYClrbK6fYbWwXtPsyPO1Z2CorB5gxprvtBW+E50ltGvtsg7n86yE4YY+6fH34o4rETIfWK0Okrl1ZzxqrCy4MT7fXNMnvQe2Wi7licCljaLKhVhJQKqGN5pwAtq/YvTAZcXiv/vdv2DOI2KrHw5HzMXtfz2AlLhL+XVldXWV5eZnJy8sDeo8s0nog6mxRUyKhSpYnj1m2OOkyyQkFEh0dRCRDtk8o4ABW/Te7G2UtrtHUeJUPFIZoRsEUiE0S6RSftkFEhIEco6DGNo6DK3oEd362azeZ9eZ+j5OZOQF6Vflb+ec/JiG9dUlp9ZW4iYLdTniy2WmV2akW6bDTLmQCAfgbTjbI8zdxEwNlBIszJ2ZBqBFc3HHMTZUbrUfWuzqyq+o8H3RFjzP3hRBivlSe9ibrwgYdiVJVOX9lqeR45HvLCtYzEQ5Irr6zkOAdn5gK+y2C7JMq1Ls9fy3h9LSMvymzDqTHHk2cDtlrlVEjVCrcemMnJST72sY8dyGs3ewEvrZUja/NjKVudCK/C/8/encfIneb3fX9/n99Vd9/sbrLJITmce/YeSyutV1pBtqWNEktAomDjRFJiAQsIiqQEAWLJ/ssJBAj5I4ntwAJkR9YqNqysEwES4owUW97x6thrdne0c+0sZ8jh3Xd3dZ2/6/nmj18Nyd3lzJCzQ/Y0+/sCGqz6df2qn+ouVn3qOb7PfKtaeTzKHcvtjGEe0B0HHGnlCJCVQuAWeOFag17qmKkfJy0c1fZsypm5Eau9iBMzGVkhXNhJmG0cJQqe5OJOQhR45ls51yZlbh5dHDJdv/srHvZ7QdH9zInwvgfi69f/6uMxL12spmk8fCyiN/Q8uBzyp39RUhIw3XKcOerY3PM8uBTSTIRhpjSTaoXrXPvGsPtjK4d3Ltwbbnd16keBfwQ8BsRAAAxUtXMX22aMuUdEhA+dvvFCO9N0bPc9Rak8fyEnDoXSC23Zpq8zlCWg1WRjr3B0JuDUYshCx+Fc1TtnDi7nFERBq31M3+h7G2aOzX4dgHEm7IyqcNcbB9UWblnA0U7G+5b7fPVyi7QICJynUyuYbxas92P2xiFnNwICp6RFwLW9gHat6nrJS0eW3wj+h3iU7L51dctf373h0ZWIv/JQFdgXw9fJNeHxlY/yytUCEXAO/uzllFGmfOTBmPmOva58p9sd4/jfgE8B/4pqperPAg/drUYZY/ZXs+Zo1hxelayAr53LuLyZUxLh8AzGyrlxQbsuDDM4tRiyOF29wJ5bK9jYK3l4OWKmZZ+UD6J24nnsyIisFOabBTONgn4a0KmVfHO9jqoQBJOyEAp5Kby2WYW7rBDaSUleOtxkq7WdYUQvDZFJLMtKYamRM8wCRJTdYcgwd5yZH3NiJqXV94ROmbkHvXDm3mrUqnoi3iuvXK32zf3g6YhSQ3JNOL9ecn6tCnmj1LM72X7r8lZpIe4Wbnuiiqq+KiKBqpbAPxORv7iL7TLG7IPdgefaTsmx2YA4FC5vFcy1q/pfqspYmyhV71u77nj4WMh821GUVbmJTl144UIGQJYrH3+8ts+PyLxTUzcFqJlGyUyjuv744pBx4ahFns1B9RZyem7EX15toQij3LEzjIicMt/M8F7YGTmKUljqZIyLgIVmzkyjoBF7NgcR3VFIO/FMNwoCB8udfF8es7n7FjoBP/xEwk7f843XM0rg3GrBenkCRbi4UbxRNI6jsyHjvGCUKcfmLMDdyu2GuKGIxMBzIvI/UZUasUqaxtxnvvitlCxXrmxVCxm29kqCQHjiRMjVrZJcIxwlUw1H4ZWvvpox3XSIVJXVhao6e5broa7ddD9r1zxtPOe2Eryv/sZrvRhVoVSYa+Rc3A1wDrqjkFEe4BVmGznX9mICB8enUs5t1djsR5QKUaDUI087sZ63w2Cq4WjVqq3bNrqe4zcFtE7D8f0rVa3KqYbjxIItinort/vb+RnAAf818N8Cx4H/+G41yhizP0InZOi3bWWT5srV7ZJmzRFKiQJRCKNh9f1xrrRq1QlhKPzQYwnjXG0o9T5ypRtzZTdmrlnwwMyYrWFELfSIKEUpZIUQBUoEdMchWSE04pJSq+POKVP1kkEW4j30s4B+6lDAiXJiOmWmUVCUwoXthFZSsti23rj7XZZD6Ko9daeDNYa+wxMnouuvJ+bt3e7q1AsiUgeWVfXv3+U2GWP2yQ8+GrPe9SxOBwhweavg4mbBdq+qFdd2W3gCwkAYZyWdhuPDp2OaNcfV7ZK5tqNRczRsFPW+starFjBs9CPSQtgbhwROWWhkrPUTuuOQ6XpO4GCQOeqR4tWx2E7pjiIaccmVbkw/dZyYSdkehuyNQ0SUJIDXt2tc3fPUI093FLLRj2gnJY3Yv33jzIFUlDAYV3/fzT1PtzyCx/Hypfz6Ygfz9m4r7orIf0S1b+ofTa5/UET+8G42zBhzb+0OPOfWCjp1oR4LtVg4sxyxMld91htnysB3EPWs75aEgeCcMNsOiEI4Ph/YEOp9arGd40RZaOXXV4yqQq7VULqIkJWO7WFE7oU4LBnljvV+zMp0Wu2NidBOPAvNnO4oIA6UWqjUouqNPC+FOKguB04JA1ubej9LIuHJB2IWpgIePx5Slf2FwnL7HbmTYr/fBzwDoKrPicjJu9IiY8y++PLZlHGmXNos+aHHE/ISppuOh49GLE0H/Pk3U0oi9vws852qjtOxWUdeKH/6crXbwwdPRZyYtzks95tjUxnHpqoFK2khrPUipmol9cgTB0o99lzaqXpPSi88OJuSFQGosNqLyAvHXuqYaxSc3awzzAPaSVmtRE1K1noRM/WC6XrJbLOgHlb3a+5vpxerfVUB5oMrpFrng6fitznL3Ox2X20LVe3KvdzB2hhzT8WhMM6U0sPnXkjxXnn/yZi8rAoBL0wFFBrjKPnAyYgXLxW8crVkb6j0R9XH52s7pYW4+0haCJv9iE69oJ14+qkjCZUTM9n125yaq3ZiDES53I3ZHYac3awRhx4ngFa9dJ3E04hKuuOIRuQ5Pp1en/d2enIfe+OAohSSmgW4w8bj8AQUpQKWNW7X7b7aviAifwsIROQh4JcBKzFizH3ko48krHdLvIdvvF69SV/eKq7vm7o8ExCQA8rXzuXs9Kvj2wPP8mzA3lB5cNEC3P3k7Eadfhrg9mIWmxnXeglhoDy+OGRrENKIPXPNgqwUZhtVgdY0DwAhCUpGRcCwqIbYo0BZ7mRkpWOYO0oF7+HSbkJWCnPNnG9t1EGFcZFyfDp768aZ+8YoU7bLoyjwjQs5H3vU5sTdrtt9xf0l4O8BKfAvgT8G/se71ShjzL1Xi4QT8yFelWEaMc6UE0cCvvhKhvdKsyYEUuJx1GLh5JGQK9slZ5YiHlyy8HY/Eql6xAQYFFUZiKIUzm0l9NMQRBnlKZe7CZFTHlkYImi16tRVt3UC862MjX7Eue06i62MS7s1Lu3UGGYBW4Nqj820ENA3NjW3npjDJHQglCgB9cj+9nfidlenDqlC3N+7u80xxuw3J8Ljx6Pr13/4iYRxVg2n/ll4gUxrfOhUTBgI7z+5f+00d99DC2O+cbXBOHfMNjy1qCQtHH4y2um90E+ruW95KVzcrV2foF6PPDsjrpcgEap/+9mNmmBJ6HFO8V6YbxUIsJcGzDetvMhhcHW7pDv0nF4MWQxeJ9MGHzgVvf2J5rq3DHFvtwJVVf/mu9scY8x7TbvuaFc7KhFJRiQZYWCflvfT9vY2o9Horm/crghr8iQAVzVHUEqJQT0BKZm0uaxVwcCCOjF7FNKkIGJbzzNggVISriiEpDhKelxijxUCMkZcZsgck8R80gAAIABJREFUI6bYen2XnhwDYPX1PWa4cFcf2812d3dJ0/Se/TwDvZHn2dcyUGUw9mz7o6Ra5/xawZllC3K36+164n4AuEQ1hPolbLahMcYcGoJS123GTNNgm4wmJTEBOYIQUOAlJtIBXmJymoQ6ppCIHkeBat6koyRmQEDOgCPk0iSnSUO36LEMIvQ1xmmBl5CQERmN68HP3H+cVF9+Mjcy1eqT4tWd0kLcHXi7ELcE/HXgPwP+FvCvgX+pqi/e7YYZY94bskLpDjyz7W+vATcYewapstBxvHSpYKtf8vhKZJtU3wOzs7MMBgM+8YlP3LOfOcwW+dZGjawUnlgccrWbsNqPeGA6ZVw4ru3FNBNPp5azPYhRoBkXlOqoBdWqVCbHBllV6Peh+QVeWG3hRGnGniQoadU8eXmMjX5EEno+cGxQrXK9i5555hmaTdtJ8l5q1hwfezShN/YcnXH86ee7jLXBQ0sW4O7EW4a4yWb3fwT8kYgkVGHuGRH5H1T1H92LBhpj9o9X5U9fShmMPYszAbnGZFqjN/R8/uWUsqw2pr6yVfWWvHKlsBB3wJQeXlmvarednhvTjEvGuaNTK7m5qtRGP2KcV3/by91kssl9tRZhZxiiCgutbLKwQWlEnmFWvcWE4vFaFfFt1wpGecByJ+X8dp1AbhT23UsjeplSC6sevLQUCi/EgdIbO85t1ahHnjML47se7MzdN9Ny17fnmw1WAVie/eH9bNKB87YLGybh7SeoAtxJ4B8Cv393m2WMuddUJ6sKb3rn9h6GafUG2x141ooH8Di+di6jLKvjpa8+VQ/GnvmOY7vv2R1Um1pHob3TvtcNM8feuHoruLoXMcpqlF5Y7mS0kpJB5lju5DTikvFkT9RWXLLRjwgmK1AVoRYpvXFAPw0RqpWtpVZDZmnpyEphuZGz1ktQFdb7MYoQuGqBA0Cp0Ig8raTad3W2kfPiaoNwEvRGecAoD+iNc6bqNsx6P9jue168mLNTHmHare93cw6ct1vY8BngSeBp4O+r6gv3pFXGmHtqlCl/9nJKlivf93DMds+zN/Q8djziw6cjru14js4GfPHLVSiLQuHRlYj1rueJ4xGhg9WuZ6bp+PxLVaHg7V7IU2es+vp7XSOuQtMwd0zXCvqTQNcdB1zrRZO6bY7eOCAJlHbsGeQBWeFoJSWdpOTirpAEnuMzGS+vVatV08JRlEIrKclLRy1Uemm1J2+pUHhBFcKg2jN1exAhKO24ZKNfPW/GuSPNHSkw28yqvVZDtT1V7yPfupqz0y/p+Rkabm+/m3PgvF1P3M8AA+Bh4Jdv2rFBAFXVzl1smzHmHtnaKxml1Rvj2WsFm92ql8NrtUfmIFVOLwYkMmToOxyfd7y2WrI39HzzipAXynq3JIkEVZ2ca1X3D4LAwZPLw2+7PsgC5hsZr2w0Jr2zSuEFkSp89bOARuxR4Fovph5WVfa3+iF54WglBV6FJFSysro+ygNyL6gKYeAJBPKyCnp56as9WBFuftZM1Qt6aUjglAdmMk7PpQQCtnnQ/WO+7VjfLSk0ZrtYZKtXMte2KRm36+3mxNlu1sYcUE8//TSrq6u3ddtSHZvlCp6QabfGVrmMJ6AufUbaAuDZLw3Z7CnQ5Z///ufJqaPA81LV9Cq06kmZd5fJqLPudnnxz25vyGtpaYlPfvKT7+RhmnfZcicHqr/pE0tDRrljrlnQSUrOb9eYruckIVzpxiy2M7wKwyyglZTsjEKiQBkXAbONnN2RgMIgDQkDRZxSToLcXCtndS9mulHQiEp644DjMynLnZxm7KlFymyjYKndt9B2HzuzHDHVEL729YycGi9dyvn44xbibpeVWTfGEIhnMbx4/fqynKcgIiRnvXyAQkMaskvsGpSSkLgRLdlj6Nu03TaCp68zNKRH3Q2pM3yLn2YOilbiaSVVD+3uOERVuNKtcWxqTFoK1/ZinlwestDKiBys9yOudGMKL+wMI0SqRQrjIqDw8OBcys4wZK5ZMNsomG9mFN7xzbUGIlB6R+Dg6NSNYr8W4O5/M62A2GXkGjPbsgB3JyzEGXOferd6tlR1srJQyEtllCqdhnXSHzaRqwY6nVMG2Y1dGs5tJXRHEZ1awZn5MV6FrWHIIA3wKnitVpk+ND8mLRz9LKBdKzm/nbDeiwkDD1TDsc7ZEPxhFAbCYvA6JRFPnPjB/W7OgWIhzhjzlkSENzZoiAIhaljXyGH0wGxKu1YSiDLIXLVYIfIMsirQ741Dzm7U6KUhqspCO8d72B5GJIEyzh3rg2qhxJVuQjgJbHnpONpJiQNlqWPbbR1WThRHtt/NOHDs47Qxxpi35QSm6wWvbdW5vFsjCT0nZlJmGwVx6FlsZ4RvjISJ0B07toYhhQdQhrljnDvysiodcmImpZVUofDaXsJqP8b64Q6vQiOGvkXp7VlwJ6wnzhhjDqBut3vX9079TiUBGzwGIlzUjK8TouLo6GW2GOFxFDQoCRjKEbIsIy636NRyXpcTAMTao7z0OueJGDHNgAVUAlBl5+xLOO59+ZBut2s7NtyBO1k0dTu8Ol7dWcBLyP/y23/MXHDtXbvv+33RlIU4Y4w5YJaWlvbtZ0d+g7E2CMjZ9UcA8LJEb7L35by7REZM5hPSNGPsFoiiGqE4vAYgAQRLDP0cmSY4FZpuj4br03T1fXlMzWZzX3+nh53H4cJkUkPQBgjvhOghq+X01FNP6bPPPrvfzdh3233PYOw5NhvgbP8aY8wd8qq8dCknzaEew6vXCqBaabjTr0rLvPSXf06qTT70wQ/y0HLIhc2SLFdEhEYiDMaeKBR+7EO1b9spxBw+l7cKtnqeB5dCWjULcjcTka+q6lO3+p71xB1C/bHnz19OUVW6w5BHjkUEgoU5Y8xbUlUub5VEgbA0E/DkiWpnhbxU8rKaN1ePhZ1+SVoookrMiN5YeeVqQTB5b04i+P6HYlZ3S45MBez0PaNMOTobWJg7pFbmQlbm9rsVB8++hDgRmQb+KdWWXgr8beAV4P+k2p/1deA/VdWdye1/Dfh5oAR+WVX/eHL8I8DvAHXg/wV+RQ9b1+I7UJRcr6q/ultyfq2kFgsffzyhFtkLqDHm1s6tFbx4sVpB+tSZmEGqtBLH8mzAylwVwKabgnPw5bMZY1okDGjXqteVJBLefzJmuuHICiWOhKxQ/uKVDFQZjCMeORbt50M05kDZr564fwD8kar+JyISAw3g7wJ/oqq/ISK/Cvwq8HdE5HHgU8ATwFHg34rIw6paAr8JfBr4IlWI+3GqfV7NW5huOj78YExvpOwNPcNxyShVugNPbdoKLRpjbq28ac3B2WsF3UF14KHlkLPXChDhBx6OOTYb0qpVw6s5dcKgOrdZE65ulYQOvnQ2oyyVdsNVe7tR9egZY27fPQ9xItIBfgj4LwFUNQMyEflJ4BOTm30GeAb4O8BPAr+nqilwXkReBb5PRF4HOqr6hcn9/i7wU1iIuy0rc9WffnfgGWZKIxHmOzYPwRjz5h5cCnECUSj0Rr4KcSKM8kn4UuWbV3KiUHhsJeSlr/cZ+A5FCcfmAq5slYCnO/L4SSCsR8KDp2KGmfLgks3wMeZO7Mf/mNPABvDPROQDwFeBXwEWVfUagKpeE5Ejk9sfo+ppe8PlybF8cvk7j38XEfk0VY8dJ06cePceyX1guun4kSdr+90MY8wBEDjhzHI13Fl6pVVzNBNhpuVIwoJR7rmyWSAioEosY/pMT86thlPTXJlpOh47FrDV85xaDGgk9gHSmHdiP0JcCHwY+CVV/ZKI/AOqodM3c6tJWvoWx7/7oOpvAb8F1erUO2vu/Wd34PnW1Zz5TsCx2YBvXc1pJM4+BZu3NRh7ukNlcdoR2EKYQy1wwskjN14znjgRkebK1p4nzZW9kdL18yhwajHk8eMRjx6DvZFnvuNwUi2OMMa8c/vxrn0ZuKyqX5pc/7+oQtyaiCxPeuGWgfWbbn/8pvNXgKuT4yu3OH5fezeKLK4VJ0gnNZ3q0mN7WD0NHmhtUHOj77mNb7jfiyweNnmhfP6llLxQjs2FfOTBeL+bZO6hNFfCgLcM70kkfOLJGqNMubBRzYkLpeDobEDghCCGWvzmwc17vb5KfnfgiQJoWrkJY97UPf/foaqrwCUReWRy6EeBl4A/BH5ucuzngD+YXP5D4FMikojIKeAh4MuTodeeiHxURAT42ZvOMW8hkhSAkIKQjLIs8WVBIOU+t8y8lxUe8slTZJwf+g7tQ+XCRsEfPzfmc8+npLlno1syTKtJbWmu37YgIXBwbackDKAt28wGa8y13zy4DVNPXiiXNwv+9VfHPPPCmPNrOZ9/ccznXkjpDu/9Dg7GHBT7NX72S8C/mKxMPQf8V1SB8rMi8vPAReCnAVT1RRH5LFXQK4BfnKxMBfgFbpQYeZpDsKjh3ejZUlV2+p5mzRGH8Ju//a8IpODTf/s/fxdaaO5X9Vj4yIMRW3veht4PmbXdElQZpspXX8vY3KuK9D6+EvGNCzlRCB9/LKFZc5xfLzh7tSpDEruUptvj/FrBa6sFK/MBU3XH8xcz5toB8x3hL18viENoxIKqsjdUVner3jjvlf7YM9Ww3jhjbmVfXolV9TngVtWHf/RNbv/rwK/f4vizVLXmzG3IS6UsoRYLszd9Mq67wT62yhwkgQiBE6we6+FyZilkmCqduiOtdrQnL5RrOyWqSpbDC5dy+iMlnryr5KXS9XPkmvDKlZysUL51xTPTcowz5cpWwTiryotkORyfCxjnylTD8f4HIl6+IiShsGzz5ox5U/Zx+pAYZcrnXxyTFvDBUxEn5m/9p09zJQqxqunmu4wz5SuvZpOdPjw/+Giy300y98hsO+ATT1Zhqj/2fOtKwUzLMd9x5OehFsP6bknpYSDC9z8c88qVghc0Zk9nadSErK8szQQsdAJ2BjkzTeGJExEvXipoxMJjKxFPnLgxz/LDp23OpTFvx0LcIbE3rFaMAbw+GdpoJsJHHowpNMTheW0158WLOe2G4+OPJYSBBTlzg3PVfKeihDi058Zh1apVxcLf8PHHqzD/3PmMs9dyilLZHVSLX7wGOCl45GjIy5cKAiecWAg4sRBcXyDxsUetp82Yd8pC3CGx0HGszIcMxoqg7A48vSF840LO1eJBAkoubVZTDXtDXw2dNOyN2twQh9XWbLsDb0Nc5rt88FTMMK0WPbxyJefUUogiiMLr6yV7I8/eyHN0NrDnjzHvEpstekg4J3z4dMzHH084tRgiItQTRzbpnSsJqCfCzsDTrAntugU4893GWTW5vbCFzIdaUSrXtktGWfX6MUw9RanMtQNEhDgShmMlkAIVoZEIiJBEwpR9ODTmXWM9cYfQsbmQ+bbj3HrBKFMSRkQuYzD2zDQdw7QaMovs2WFuMs6VL53N8L5a3fzRR2xO3GH11dcy1nZLarFw6kjAy5cL6onj44/FCLAw5QgD4RkZEpDxxImIuXZ1rJE4LqwXZKVyejG0otHGfA/sbfqQWt31nL1aFeNMXJ+SmN2BJ5h8ag6sj9Z8B+HGNinOnh+H2hs9cFkB63vVatVR6nn2tYztnue1NeGJ4xGp1gkl4vW1ghcuVmVHHlwKeW21eu3xHh45Fu3PgzDmPmAh7pBKourtWIHUt0ip4wROLoY8eiy6XjXdmDckkfCxxxJ2+p6VOZvTdJh9+HTMubWCxemAWiS8cDFnuinsTQrz5iVc2SpRhFwjNvZuFOwtbqrdG9rTyJjviYW4Q2ppJuCBIyEvX8pJqYEKgXMcnw+vBzxjvtN00zHdtG64w67TcHzwVMxg7PnGhZxmTXj8eMT5tYI0hzNHQ1qJ8O8kJyTnAycjXl0Vxpny6LGQ2Zbj/FpxvaacMeadsf9Ch1h/rNWEY4TZ8Co/8r7vp2X7FBpjbtNrqwUb3WqVi1fl6lZ1OZCqttzR8ByZJiCCKlzdLtkdKNNNYXfg+fo5T6cR2I4MxrxD9j/nENjulZxfK75tf0OA00dCwkDINGG3OMIwvfV+mN4rr63mXJxsaG2MMQBzbQciRKFQn/Tg52VVwgigV86wWpzkc8+Pq6274Pqeq1Ctmrf5t8a8c9YTd58bpp6/eOWNFYUh9UTY7nseW4lYnHF8kIivfDXFE3Bho6AWCWFQzWl59tWMWiTMtB2vTvZCjAJhedYmshhjqpXuMy1H4IQorObYfv1czqvX8qqEETWg2qLrzHLE5p5noeM4vRiyOF3Sqjnr/Tfme2Ah7j6nWn0BDFLP5a3qU/CLF5XSw06/xGtAKAVO4JkXxgROmO84BmPPYAyBu9FDZ6sSjTE3ayQ3XhSOTAVMNaoe+0ubBf2yQ06dB46EnFkKeWj5xnzb42+y9Z8x5vbZW/J9rllzLM9UK8jedzK6/oLbTKqVZIETEhnRcjsMxpPCv15p1apP1/XE8f6TMfMdRxwKkXXCGWPexELHcWY54thcSBwIIhDLiKXpqgiwMebdZR+F7nOruyVXtyefjDdK5jtCVgS874GI0sNWz1Pi2POzbPaqoY4gEB5ZCSi8Z3Wn5PJmyeakRMALF3N+6AlLcsaY7yZSrVIF2Ngr+RNKQsmYbVt/gTF3g4W4A0ZVObdWUpTKmeWQvaEyGFf7Ed6qtlsSVtvdoNVk451+FcZejoT1rqfUGwVc47Aq4jnOPF97DVZ3qonIFzYKGoljmPpblpfIy2pV2kzL0bFVZsYYYKETcCx6Fajm0hpj3n0W4g6Yq9slL17MgGobpIsbJarK7jAkDoX+SHl0JUQVdgeexemAjz4Us94tmW4JOwMly6t9DktfDZ8G5KRaI4mEYaoI0B95jkwHXNkqmEsCPnw64upOSXfg2dgr8R5euZqzOBWwN/Jc2y4JAuGvvb9mdeaMMcaYe8BC3AEThTcCkpOqZw5gp+fZmSzrL0plq+/JC+XobEh/7NkbemYGAQsd4eIGdEdV711VCkAIpWCUKiePhOyNPDMNx6mlkJ1+yVav5PmL1dBrXijre54kEnpDz27fM92qet+8r1anGWOMMebusxB3wByZCviBRxKKEpZnA2aajr2RcnTW8effzChLpR4LeTUSSloog0n9t2HqiUOhHgu9oeJEGaZKRh2PY5gqy9OO7Z7n3FrBtd2SohRAGWeT+y2URizMth29oafTcHzkdMzFzZK5tqN2G71wbwRPm+hsjDHGvHMW4t5jilL58tmM/tjzodMxC53vXkSwMHXj2MpNy/R/5MmEYarMdwK6ozHfvFxyZCrg/SciPv9yShIJDy6FfOtqzkInYG1SaV3wRJrRSIRnX8t5Y2qd9/D4SsjFrZL3nQx57VrJVg9OLAScPBKRhFVtqEYiPLby5ptY7w09X3k1IwrgyQcivvpaTl4oH304ZrZtiySMMcaYd8JC3F309NNPs7q6ekfnjH2D9fI4AF//ygBPiCLMB1fw6vCE1KRPSUihMYkMURw5MTFjAHJi1osTeAKunIcp2aCrC7wKfOPZLiPtANBxW6RaZ7TXJ3cdvv7ccwSUoJ4RLebcFb6ss3gcX/lCj5G2AfjWC2M6bpvN8igAM8EabbcLQKYJhcbUpcdQO6Rax6sw1CkAvvgXfUbaAuCVr28zHWzc0e9naWmJT37yk3d0jjHGGHM/shB3F62urnL16lWmpqZu+xzPCGWakpicIWOZBmBN26R0QISmKkPmUQlo6AYZbQqpUdNdQBjLFNWaBY/H4RByUgpqQEkuVcmRsY7wFJRBGwHC7BoRY/ZkBaFPTx25lEBJoQ4lQ0VwOmCTOpkUCEovE0bUiRiwzVEQoa6OEbMggtMMZYzgCbgIrOAJgFUGk+B5O7rd7m3f1hiz/woNcfi3v6Ex5h2xEHeXTU1N8YlPfOKOz1OFtDjCS2sNSi8sdzIu7yYAzDaPsT2ohi+n6sfojkNQoRZ5Sg956UCURuQZZgFwjKlazs4oQmSZJFA2BiFL7eNM1QoudxMCpzxyZMSV3Zi1fkwtrF54vUIr8QwzRyBwpJOy0X8A9UIceo60cq50HwCERlzSyarh0bnmUbrjiKIU5ls5D85VYU1k6aZHuXxHv5Nnnnnmjn+Pxpjb805GDt7KwHe42F1EtOCf/Pb/QSjv3t7L1iNvTMVC3HuUCNQi5UPHBtePBU7JS+HYVEYnKdkahqSFI3JKLSxRwIkQBwUiMMwdXiEJPWnpEAFBqMcFU6VjlAfUI09eOpx4NvoRgyykFXumakUVDoFm5MmKagXqKAtIC0ccKIUX9sYBpa82sa5HnsV2zjh3HJ3KKH3GMA+Yrhes9yOu7cXMN3NWprP9+JUaY+6hsTZxQQAE5Jq8qyHOGFOxEPceJwJ744DXtmrUQ8/puRFXujGBQBIovUnQaiUlO8Oqd26ukbE1jAGYqef00pBx7kgiz0Izp1RwTkkCj6cKXwqkhSMroR4poIwKoZ2UFB6ceFqJZ3dU7XKdBCXjIqCXhrRrJfPNnCPtnM1BxM4oJHBKI/Zc2E7YroV0RwF56bi8m3B0KuMWdYmNMfvo3e7Z2ht6vnEhp5kIHzgZ3bIYuTHme2Mh7gBY60WkuSPNHee3auyMqrA208gYF0Ij8nRqJdf2YqJAaSWezaECQi1UuuOqpywOlGu9GFRYaqd4hO4oIIlKisIxSAOcU2ZqOZvDmHpYDcnujd94mnicQBIq042StZ7Dq7DQyunUSnrjgMs7CYUXLndjWrEnLRxp3zFdL9gdOaYbhQU4Yw6BTsPxVx9L9rsZxtzXbI+kA2CuWSCi1CJPu35jSKI3DomcEgbKOHc4qbbQCiZDnarKkXaOoowLYaGVgVYJapAHrPdi0iKgEXmatQIFQhHC4EbJ3iT09DNH6aEeleQlxKEncor3QuCUZlzywrUGr6w3rhf7nakXzDVzEKWVlDx8ZMRTx3s8sjC6d784Y4wx5j5mPXF30fb2NqPR6F2ZkF8SsIdjl5yUFoKny3FKiRH1hAzIpSoBsnqhR3aLy3uXNxnTwVEyxQW2eQgvAa+rRyXAa8gMFxixzR6LRKRcYpFcEgJNuYpSSjVMe14H5NKsfsb5DQayiMPT0C1arDGi5BrgcYzwfP6V7/lXwO7uLmmafu93ZIwxxtwHLMQdACUhW5zBS0Rbr1BSI6VFjR1SnUIRanRx6hGUGruUWoWtGjvkWoWtlBZeYjww1hk8AU4nWzugBGTU2WaPY4xkhvHkew6Pm3y/ICHWPjV2rv+MkSzgNaTB2iTAzTBkjgZbNNm8178uY4wx5lCwEHcXzc7OMhgM3lGJkZvtjQNeWm0A0K6tXF/M0IxLRoXDeyEKHqIZVwsPktDzaKNgdS8mDB7mY3NDtoYRvTRgmAeUHtrJCqO8up8oKOmOI87MjViZmecbVxuM8gCvMN/MCUTJS0d3HBI6z8m5Ma9uPs6cCnFYkhUBCiy0Fmgnj/H6doKq4JzyfSf639Njv9kzzzxDs9l81+7PGGOMOchsTtwB0E5KjrQz2rWCB2ZSmklVTqQel8RBVc8tDjzjoprvlpXCMKv+tEUpXOomrPdjhllAM67m1O2lIXFY0q4VZJN5ccM84JX1Ov00IC8hcp6dYcT2KGJcVvddqDDOA3Qyt266XtCuFdTCks1+xPmtGnFYzYybbVhJAWOMMeZusZ64A0AETs/dmAv25NKQF1frbPZjmnHBdD1nexiRhCW1qKQ7Cgmd0k5yRkXAIKt6ygKnRAGEDhSIAxhmjkIBL9fDX+iqEiSt2LM3dqhCKEq3EE7NpmwPQ/bGAYvtjH4aMswC4vBGVfbTs2OaSUloHxGMMcaYu8ZC3AEkAqO82hlhVATopPRHXgbUo4IkrIY/m3FJUVYhbKaRUws90/WSOFAC8az2quX/rbiq+Vbt7qB0agULrZy0EHppwFwjZ3MQUwuVYVbdbqpWEt1Up06AB+dHhIEyVS/fpOXGGGOMebdYiDugTs2NWe9FHGnnAFzaSZiqF8w2Cka5oxb5SW22COeUfhqwO4rYHCoPzo24sJ0wLoQ4UKLAM8gCQlfVgJtpFDinXN6tA9BPA5woXoXZZg5S9eAd7WQMaiXbw5CV6cyGT40xxph7yELcAVULPfWoqtfWqZUkQXU9DOAjx29s1dVKBjiB1zZrZCnkJVzdixkXAbVQma5n7I5ivMJcM6efBlzYrgFK4JTSC516ybGpEYUXmrFnsX0jrAWOqvetZgHOGGOMuZcsxB1QZzfrpLljYxAx18jZ6MfEoefJpQHDPKAVlwSTuW9RoJyaG/Hli20CEXRSOqQel0TVqCxxAEvtjFfTGqVCFMCZuSGZdxxpFaSFoJNKvpd3YwZZwEIz4+xmHdVqLt3N8/aMMcYYc3dZiDugIqekk3+ruWyQFY6X1+qM8pB6XDJVK1ndq8Ld6bkRjahKYV6FmUbOdL1gul6wNw5oJSXjwjHIAsaF41hnxLc2q7Im6JgLuzW8F460Mtb78eTncX2HhjdWqxpjjDHm3rAQd5d1u913ZceG7+QJSGkRM8AT0ecIMX2GLFBKNNnFYUQuTRQ4/+oeKbNEDFAELzGoUqPLXl6FtWaUX9+FoXe1SypTAFw9f+Pyqu6S0cJLSEvXiBiRU2PIFpfwt2zru6Xb7VqdOGOMMWbCQtxdtLS0dFfvv00BVCtMpyc7I4z9JgOdpiE9AsnpltWfeKRzJEBTSjKtkWpCJDk1IrqZIsB8fcDAR2SagHZIRKi7IdOyQ0+Fkogpt4fQpSQilvGkJUOgflcfK0Cz2bzrv1NjjDHmoLAQdxd98pOfvOc/c7tX8vp6yfJswPJMNcw6GHv+/YspRalEIWS5UpTwxImIV64W9J77BgvuMj/yN36KRiK8eDGn9ErghJ946kY4ywrl0mbBTNMx2w7u+WMzxhhjzA0W4g6wK1sFq7ue04shM62qsu7Xz+cMxp6rOyVPHg+5sFlyYj7kqTMxl7dKNrolIhBHwlbfW1p0AAAR60lEQVTPI1R7ow50ilevVeVK6omwtus5uRAyzpSz13I6Dcf6bsm1nRLnhL/2/hq1uJoHl5dKFNicOGOMMeZeshB3QOWl8rVzOarK3sjz4dMxoYNGIgzGUIuEFy/llB5eHOXEIYyzahlCPRE29zz12BEEUGhMqtVWXiJC5JRGLOyNPH95IWNtp1rN2mnc2ILBewWEr53LuLxZsDIf8uHT8T78JowxxpjDyULcARUI1GNhmCpppvz7F8Y4J3zggZD1bknplU7DcWG9oN1wgFCUEIaQhEIzqc6d7wSEkuE14MGlkLl2wF++nhEEMMzA9T2Fr0LjFLAwFRCHwr99PmWu5djuVwHv2nYJp/f1V2KMMcYcKhbiDijnhI8/ntAdetZ3S86tFXivXNmphkjTXJlqSDXkqcpMM2CzV5AoeIVBqoQBzLZA1aEIyzMBz76a0R95kqi6XZpVQ6VR4OgOPc4JrVp1n1u9klNHQta6npNHbI6cMcYYcy9ZiDvAkkg4MhUw1XBkZVWg9+RCwN7Q4xWWZgLWu1XZj8BBK6nmrYlAs+ZAld0BOMnxGvL8hZw0V+JQmG07dgdKWSqtuqMWCRvdkmYinFkOeelSznw74MkHIt4nNh/OGGOMudcsxN0Hkki+bT7a3/hgHVVFRGgkjnGmrMwHdBoFOwPPqcWQL30royhhkHo8ESJV8FueCbiwUXByIaR+TFjreo7PB9QiYafvmW46olBYmbOnjjHGGLOf3Nvf5O4QkUBEvi4i/8/k+qyI/BsROTv5d+am2/6aiLwqIq+IyI/ddPwjIvL85Hv/UMS6hN4gIuSFUo+FEwshToQzyxF/5UzCfDvghx5P6NSF3shTakBd+rzvRMRa1xOHwtlrBbPtgMdWIlo1x+ae58uvZnzhlZS81LdvgDHGGGPuqn0LccCvAC/fdP1XgT9R1YeAP5lcR0QeBz4FPAH8OPCPReSNCVi/CXwaeGjy9eP3punvfXmhPPNiyueeH/PNKzkX1gu+fDZlu+9Jc2V1t6T04EQIKfAa8PXzGVlRBbQ4BK/KCxczvnI25bW1nLJUdgee3f7d3ZnBGGOMMW9vX0KciKwAPwH805sO/yTwmcnlzwA/ddPx31PVVFXPA68C3yciy0BHVb+gqgr87k3nHHqjTBmlVdha3y35yws5qzslz1/IeO58xsuXcvZGyuJ0QMPtklJnnCnTTUfhYbPn+eblnHOrBdd2Soqyqi032w6u16QzxhhjzP7Zr4lN/yvw3wPtm44tquo1AFW9JiJHJsePAV+86XaXJ8fyyeXvPP5dROTTVD12nDhx4t1o/3tep+F46GjETt/z8NGQ587nbO554rBauABVmZKdvmfop1ERRITpptAfAQp7QyUIhLJUHlgIOXnE5sEZY4wx7xX3/F1ZRP5DYF1Vvyoin7idU25xTN/i+HcfVP0t4LcAnnrqqUMzoeuxlej65Y88CP/fcyVp7okCxxMnIlThpUs5iNJgjxMLjnNrJeNMmWs7Hjoa8oHEkRXKVMN634wxxpj3kv3oWvkY8DdF5D8AakBHRP45sCYiy5NeuGVgfXL7y8Dxm85fAa5Ojq/c4ri5hTAQ6klVVmS771nremZbwnTLMfZNkmDE5c2SQKBVc/z1D9R4Y51IPbb1IsYYY8x7zT3vXlHVX1PVFVU9SbVg4d+p6n8B/CHwc5Ob/RzwB5PLfwh8SkQSETlFtYDhy5Oh156IfHSyKvVnbzrHfId23fH9D8U8uhIRB1CWykbXEzqh5gakWmeuExCFwunFEFvoa4wxxry3vZcmOf0G8FkR+XngIvDTAKr6ooh8FngJKIBfVNVycs4vAL8D1IGnJ1/mTSxOByxOBySR8MKFnLmOY3naIYCj5AMnY+t1M8YYYw6IfQ1xqvoM8Mzk8hbwo29yu18Hfv0Wx58Fnrx7Lbw/PbAQ8sDCjT/9cvgaDk89/vg+tsoYY4wxd+K91BNn7hGvykuXckap8sSJiFCK/W6SMcYYY+6QhbhDaKPrObdaBTfnoOdnCMn2uVXGGGOMuRMW4g6hVk2u13/bGXh2yqok3+6g2hvVGGOMMe99FuIOoWbN8aPvq5EWyqXNG0Opemgq6BljjDEHn4W4Q6oWC7VYaB6LmAnWCcltOy1jjDHmALEQd8iFgdB2O9eve1WcCKrKKFNqseCsZpwxxhjznmMh7pB6I6y9QRW+dDZlbdfz6LGQ3ki5slVwZCrgo48k+9hSY4wxxtyKhbhD6MJGwTder4ZPP3QqYrtcwmnB2k5VQ/nSZklWVBPkNvY8qmo7OBhjjDHvMRbiDpinn36a1dXV7+k+1ooTpFoH4M//bMBmLwACxs99gZKYqWATUPp+hqbr8jsv7Lzl/b2ZpaUlPvnJT35PbTXGGGPMrVmIO4TaboeijElkRMSIIGghKHPhNSLJr9+u5br72EpjjDHGvBULcQfM3ejZ2twrqcVCq2arU40xxpiDwkKcYb4T7HcTjDHGGHOHrOvFGGOMMeYAshBnjDHGGHMAWYgzxhhjjDmALMQZY4wxxhxAFuIOOa/K5c2CrV65300xxhhjzB2w1amH3CtXCs5ezUGETzyR0GlYrjfGGGMOAnvHPuTyyfZaqJKXur+NMcYYY8xts564Q+6xlYgoFJo1Ya5t9eKMMcaYg8JC3CEXhcJjK9F+N8MYY4wxd8iGU40xxhhjDiALccYYY4wxB5CFOGOMMcaYA8hCnDHGGGPMAWQhzhhjjDHmALIQZ4wxxhhzAFmIM8YYY4w5gCzEGWOMMcYcQBbijDHGGGMOIAtxxhhjjDEHkIU4Y4wxxpgDyEKcMcYYY8wBZCHOGGOMMeYAshBnjDHGGHMAWYgzxhhjjDmALMQZY4wxxhxAFuKMMcYYYw4gC3HGGGOMMQeQhThjjDHGmAPIQpwxxhhjzAFkIc4YY4wx5gCyEGeMMcYYcwBZiDPGGGOMOYAsxBljjDHGHED3PMSJyHER+ZyIvCwiL4rIr0yOz4rIvxGRs5N/Z24659dE5FUReUVEfuym4x8Rkecn3/uHIiL3+vEYY4wxxuyH/eiJK4D/TlUfAz4K/KKIPA78KvAnqvoQ8CeT60y+9yngCeDHgX8sIsHkvn4T+DTw0OTrx+/lAzHGGGOM2S/3PMSp6jVV/drkcg94GTgG/CTwmcnNPgP81OTyTwK/p6qpqp4HXgW+T0SWgY6qfkFVFfjdm84xxhhjjLmv7eucOBE5CXwI+BKwqKrXoAp6wJHJzY4Bl2467fLk2LHJ5e88fquf82kReVZEnt3Y2Hg3H4IxxhhjzL7YtxAnIi3g/wb+G1Xde6ub3uKYvsXx7z6o+luq+pSqPrWwsHDnjTXGGGOMeY/ZlxAnIhFVgPsXqvr7k8NrkyFSJv+uT45fBo7fdPoKcHVyfOUWx40xxhhj7nv7sTpVgP8deFlV/+ebvvWHwM9NLv8c8Ac3Hf+UiCQicopqAcOXJ0OuPRH56OQ+f/amc4wxxhhj7mvhPvzMjwE/AzwvIs9Njv1d4DeAz4rIzwMXgZ8GUNUXReSzwEtUK1t/UVXLyXm/APwOUAeennwZY4wxxtz3pFrYeXg89dRT+uyzz+53M4wxxhhj3paIfFVVn7rV92zHBmOMMcaYA8hCnDHGGGPMAWQhzhhjjDHmALIQZ4wxxhhzAFmIM8YYY4w5gCzEGWOMMcYcQBbijDHGGGMOIAtxxhhjjDEHkIU4Y4wxxpgDyEKcMcYYY8wBZCHOGGOMMeYAshBnjDHGGHMAWYgzxhhjjDmALMQZY4wxxhxAFuKMMcYYYw4gC3H/f3v3H2p3Xcdx/PlyLlctiFLDzFqUNUXcleaPakmsqGXFwCz7YSFGQ0ho0SZCCkpBkVEoVDrMbkRMMNNmQjJwtn4MNze3pU1RlGisGjVsDsWYvfvjfLcud1e34e793s/O8wEX7vf7+Zzv930uH+55nc/3e85HkiSpQYY4SZKkBhniJEmSGmSIkyRJapAhTpIkqUGGOEmSpAYZ4iRJkhpkiJMkSWqQIU6SJKlBhjhJkqQGGeIkSZIaZIiTJElqkCFOkiSpQYY4SZKkBhniJEmSGmSIkyRJapAhTpIkqUGGOEmSpAYZ4iRJkhpkiJMkSWqQIU6SJKlBhjhJkqQGGeIkSZIaZIiTJElqkCFOkiSpQYY4SZKkBhniJEmSGmSIkyRJapAhTpIkqUGGOEmSpAYZ4iRJkhrUfIhLsijJY0meSHJV3/VIkiRNhaZDXJIZwA+AjwCnA59Jcnq/VUmSJE2+pkMccA7wRFU9WVX/AW4DFvdckyRJ0qQ7tu8CXqaTgb+O2d4OnDu+U5IlwJJuc0+Sx6agttYcD/yz7yLUBMeKDofjRYfKsTKxt7xYQ+shLhPsqwN2VK0AVkx+Oe1K8mBVze+7Dk1/jhUdDseLDpVj5fC1fjl1O3DKmO03ATt6qkWSJGnKtB7iNgCnJnlrklcAnwZW9VyTJEnSpGv6cmpV7U1yBXAvMAO4taoe6bmsVnm5WYfKsaLD4XjRoXKsHKZUHXALmSRJkqa51i+nSpIkDSVDnCRJUoMMcZJeUpJbk+xM8vCYfaNJLuqzLk0/SU5JsibJtiSPJPlKt9/xov2SzEqyPsmWbpxc1+0fTfJUks1d2wf6rnW6M8RJOphRYFHfRagJe4GvVdVpwHnAl10KURN4HlhYVfOAEWBRkvO6tuVVNQIsBW7qq8BWGOKGXJLLu3c9m7t3QGv6rknTS1WtBXb1XYemv6r6W1Vt6n5/BtjGYGUdab8a2NNtzux+xn/Kch2OnYMyxA25qrqpe9dzNoMvT/5ezyVJOgokmQOcBTzQbyWajpLMSLIZ2Amsrqrx42QRcNfUV9aWpr8nTkfUDcB9VXV334VIaluS2cAdwNKq2p1MtEKihllVvQCMJHktcGeSM7qm65N8BziRwSV5vQRn4kSSSxkssHtdz6VIalySmQwC3M+r6pd916PpraqeBu7n//fdLgfeDlwN/LSnspphiBtySd4FLAMuqar/9l2PpHZlMOX2Y2BbVXlrhiaU5IRuBo4krwQ+CDy6r717LboBOCbJh/upsg2GOF0BvA5Y03244Za+C9L0kmQlg5uM35lke5Ivdk03d9vbk6zrsURNH+8FPg8sHPOBqQu6NseL9jmJwWvOVgZroK+uql+P7VCD5aS+CVzZQ33NcNktSZKkBjkTJ0mS1CBDnCRJUoMMcZIkSQ0yxEmSJDXIECdJktQgQ5wkHSFJ5iT5bN91SBoOhjhJOnLmAIY4SVPCECdpqCS5JsmjSVYnWZlkWZK3JflNko1Jfpdkbtd3NMmNSf6Y5MkkF3X7k+T6JA8n+VOSi7vDfxt4X/clt1/tjjUy5tx/SHJmkmuT/CzJfUkeT/KlMX2WJ9mQZGsSl8KT9KKO7bsASZoqSeYDnwDOYvD/bxOwEVgBXF5Vjyc5F/ghsLB72EnAAmAusAr4BXAhMALMA44HNiRZC1wFLKuqj3Xn2wVcCixN8g7guKramuRC4EwGC3y/GngoyT3AGcCpwDlAgFVJzq+qtZP3V5HUKkOcpGGyAPhVVT0HkORuYBbwHuD2wdKfABw35jF3dWs5/jnJG8YcZ2VVvQD8I8lvgbOB3ePOdztwTZLlwGXA6Ji2fXU8l2QNg+C2APgQ8FDXZzaDUGeIk3QAQ5ykYZIJ9h0DPF1VIxO0ATw/weMnOs4BqurZJKuBxcCngPljm8d37477raq6+VCOL2m4eU+cpGHye+DjSWYlmQ18FHgWeCrJJ2H//W7zDnKctcDFSWYkOQE4H1gPPAO8ZlzfW4AbgQ1VtWvM/sVdHa8H3s9gIfB7gcu62khycpITX8bzlXQUcyZO0tCoqg1JVgFbgL8ADwL/Bj4H/CjJ1cBM4Lauz4u5E3h316eAK6vq70n+BexNsgUYrarvV9XGJLuBn4w7xnrgHuDNwDeqagewI8lpwLru0u4e4BJg5xF4+pKOMqkaP6MvSUevJLOrak+SVzGYUVtSVZsm8XxvBO4H5nb31pHkWmBPVX13ss4r6ejn5VRJw2ZFks0MPpl6xyQHuC8ADwBf3xfgJOlIcSZOkiSpQc7ESZIkNcgQJ0mS1CBDnCRJUoMMcZIkSQ0yxEmSJDXofz4HsoqeX5d+AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(10,7))\n", "plt.rcParams['pdf.fonttype'] = 42\n", "sns.boxplot(data=df2, x='genotype', y='Mean', color ='lightgrey',fliersize=0 , width=0.6)\n", "sns.swarmplot(x=\"genotype\", y=\"Mean\", data=df2, color=\"cornflowerblue\", size=3, alpha =0.5)\n", "plt.yticks(np.arange(0, 14000 + 1, 2000))\n", "plt.savefig(\"locus-mNG-1.pdf\")\n", "\n", "#grid = sns.boxplot(data=df, x='sample', y='Mean', color ='lightgrey',fliersize=0 , width=0.5)\n", "#grid = sns.swarmplot(x=\"sample\", y=\"Mean\", data=df, color=\"cornflowerblue\", size=5, alpha =0.5)\n", "##grid.set(ylim=(2000,14000))" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.3" } }, "nbformat": 4, "nbformat_minor": 4 }